Skip to main content
Log in

Cross-Domain Polarity Models to Evaluate User eXperience in E-learning

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Virtual learning environments are growing in importance as fast as e-learning is becoming highly demanded by universities and students all over the world. This paper investigates how to automatically evaluate User eXperience in this domain using sentiment analysis techniques. For this purpose, a corpus with the opinions given by a total of 583 users (107 English speakers and 476 Spanish speakers) about three learning management systems in different courses has been built. All the collected opinions were manually labeled with polarity information (positive, negative or neutral) by three human annotators, both at the whole opinion and sentence levels. We have applied our state-of-the-art sentiment analysis models, trained with a corpus of a different semantic domain (a Twitter corpus), to study the use of cross-domain models for this task. Cross-domain models based on deep neural networks (convolutional neural networks, transformer encoders and attentional BLSTM models) have been tested. In order to contrast our results, three commercial systems for the same task (MeaningCloud, Microsoft Text Analytics and Google Cloud) were also tested. The obtained results are very promising and they give an insight to keep going the research of applying sentiment analysis tools on User eXperience evaluation. This is a pioneering idea to provide a better and accurate understanding on human needs in the interaction with virtual learning environments and a step towards the development of automatic tools that capture the feed-back of user perception for designing virtual learning environments centered in user’s emotions, beliefs, preferences, perceptions, responses, behaviors and accomplishments that occur before, during and after the interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. https://julielab.de/econlp/2019/.

  2. https://www.aclweb.org/portal/content/first-international-workshop-e-commerce-and-nlp.

  3. https://postgrado.adeituv.es/es/cursos/salud-7/assisted-reproduction/datos_generales.htm.

  4. https://medicinagenomica.com/eugmygo/.

  5. https://www.upvx.es/.

References

  1. Ba J, Kiros JR, Hinton GE (2016) Layer normalization. arxiv:1607.06450

  2. Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. In: 3rd international conference on learning representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, conference track proceedings. arxiv:1409.0473

  3. Baziotis C, Pelekis N, Doulkeridis C (2017) Datastories at SemEval-2017 task 4: deep LSTM with attention for message-level and topic-based sentiment analysis. In: Proceedings of the 11th international workshop on semantic evaluation (SemEval-2017). Association for Computational Linguistics, Vancouver, Canada, pp 747–754

  4. Cliche M (2017) BB\_twtr at SemEval-2017 task 4: Twitter sentiment analysis with CNNs and LSTMs. In: Proceedings of the 11th international workshop on semantic evaluation (SemEval-2017). Association for Computational Linguistics, Vancouver, Canada, pp 573–580. https://doi.org/10.18653/v1/S17-2094. https://www.aclweb.org/anthology/S17-2094

  5. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37

    Article  Google Scholar 

  6. Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 conference of the North American chapter of the Association for Computational Linguistics: Human Language Technologies, volume 1 (long and short papers). Association for Computational Linguistics, Minneapolis, Minnesota, pp 4171–4186. https://doi.org/10.18653/v1/N19-1423. https://www.aclweb.org/anthology/N19-1423

  7. Diaz-Galiano MC, et al (2019) Overview of TASS 2019: one more further for the global Spanish sentiment analysis corpus. In: Proceedings of the Iberian languages evaluation forum (IberLEF 2019), CEUR-WS, Bilbao, Spain, CEUR workshop proceedings, pp 550–560

  8. Godin F, Vandersmissen B, De Neve W, Van de Walle R (2015) Multimedia lab @ ACL WNUT NER shared task: named entity recognition for Twitter microposts using distributed word representations. In: Proceedings of the workshop on noisy user-generated text. Association for Computational Linguistics, Beijing, China, pp 146–153. https://doi.org/10.18653/v1/W15-4322. https://www.aclweb.org/anthology/W15-4322

  9. González J, Pla F, Hurtado L (2018) Elirf-upv en TASS 2018: Análisis de sentimientos en twitter basado en aprendizaje profundo (elirf-upv at TASS 2018: sentiment analysis in Twitter based on deep learning). In: Proceedings of TASS 2018: workshop on semantic analysis at SEPLN, TASS@SEPLN 2018, co-located with 34nd SEPLN conference (SEPLN 2018), Sevilla, Spain, September 18th, 2018, pp 37–44. http://ceur-ws.org/Vol-2172/p2_elirf_tass2018.pdf

  10. González J, Hurtado L, Pla F (2019) Elirf-upv at TASS 2019: transformer encoders for Twitter sentiment analysis in Spanish. In: Proceedings of the Iberian languages evaluation forum co-located with 35th conference of the Spanish Society for Natural Language Processing, IberLEF@SEPLN 2019, Bilbao, Spain, September 24th, 2019, pp 571–578. http://ceur-ws.org/Vol-2421/TASS_paper_2.pdf

  11. González JÁ, Pla F, Hurtado LF (2017) ELiRF-UPV at SemEval-2017 task 4: sentiment analysis using deep learning. In: Proceedings of the 11th international workshop on semantic evaluation (SemEval-2017). Association for Computational Linguistics, Vancouver, Canada, pp 723–727. https://doi.org/10.18653/v1/S17-2121. https://www.aclweb.org/anthology/S17-2121

  12. González JÁ, Hurtado LF, Pla F (2019) ELiRF-UPV at TASS 2019: transformer encoders for Twitter sentiment analysis in Spanish. In: Proceedings of the Iberian languages evaluation forum (IberLEF 2019), CEUR-WS, Bilbao, Spain, CEUR workshop proceedings

  13. GoogleCloud (2019) Cloud natural language API. https://cloud.google.com/natural-language/. Accessed 27 Dec 2019

  14. Hassenzahl M, Tractinsky N (2006) User experience—a research agenda. Behav Inf Technol 25(2):91–97. https://doi.org/10.1080/01449290500330331

    Article  Google Scholar 

  15. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  16. Hurtado Oliver LF, Pla F, González Barba J (2017) ELiRF-UPV at TASS 2017: sentiment analysis in Twitter based on deep learning. In: TASS 2017: workshop on semantic analysis at SEPLN, pp 29–34

  17. IBM (2019) Natural language understanding. https://www.ibm.com/watson/services/natural-language-understanding/. Accessed 27 Dec 2019

  18. ISO 9241-210:2019 (2019) Ergonomics of human-system interaction—part 210: human-centred design for interactive systems. International Standardization Organization (ISO). https://www.iso.org/standard/77520.html. Accessed 27 Dec 2019

  19. Kim Y (2014) Convolutional neural networks for sentence classification. In: Proceedings of the 2014 conference on empirical methods in natural language processing, EMNLP 2014, October 25–29, 2014, Doha, Qatar, a meeting of SIGDAT, a special interest group of the ACL, pp 1746–1751. http://aclweb.org/anthology/D/D14/D14-1181.pdf

  20. Krippendorff K (2004) Reliability in content analysis. Hum Commun Res 30(3):411–433

    Google Scholar 

  21. Kujala S, Roto V, Väänänen-Vainio-Mattila K, Karapanos E, Sinnelä A (2011) UX curve: a method for evaluating long-term user experience. Interact Comput 23(5):473–483

    Article  Google Scholar 

  22. Liu B (2012) Sentiment analysis and opinion mining. A comprehensive introduction and survey. Morgan & Claypool Publishers, San Rafael

    Google Scholar 

  23. Liu B, Hu M, Cheng J (2005) Opinion observer: analyzing and comparing opinions on the web. In: Proceedings of the 14th international conference on world wide web. ACM, New York, NY, USA, WWW ’05, pp 342–351. https://doi.org/10.1145/1060745.1060797

  24. Luque FM (2019) Atalaya at TASS 2019: data augmentation and robust embeddings for sentiment analysis. In: Proceedings of the Iberian languages evaluation forum (IberLEF 2019), CEUR-WS, Bilbao, Spain, CEUR workshop proceedings

  25. Manning CD, Surdeanu M, Bauer J, Finkel J, Bethard SJ, McClosky D (2014) The Stanford CoreNLP natural language processing toolkit. In: Association for computational linguistics (ACL) system demonstrations, pp 55–60. http://www.aclweb.org/anthology/P/P14/P14-5010

  26. Martínez-Cámara E, Díaz-Galiano M, García-Cumbreras M, García-Vega M, Villena-Román J (2017) Overview of TASS 2017. In: Proceedings of TASS 2017: workshop on semantic analysis at SEPLN (TASS 2017), CEUR-WS, Murcia, Spain, CEUR workshop proceedings, vol 1896

  27. MeaningCloud (2019) Demo de Analítica de Textos. https://www.meaningcloud.com/es/demos/demo-analitica-textos. Accessed 27 Dec 2019

  28. MeaningCloud (2019) MeaningCloud: Servicios web de analítica y minería de textos. https://www.meaningcloud.com/. Accessed 27 Dec 2019

  29. MicrosoftAzure (2019) Text analytics API. https://azure.microsoft.com/es-es/services/cognitive-services/text-analytics/. Accessed 27 Dec 2019

  30. Pang B, Lee L, Vaithyanathan S (2002) Thumbs up? sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 conference on empirical methods in natural language processing, vol 10. Association for Computational Linguistics, pp 79–86

  31. Pla F, Hurtado LF (2018) Spanish sentiment analysis in Twitter at the TASS workshop. Lang Resour Eval 52(2):645–672. https://doi.org/10.1007/s10579-017-9394-7

    Article  Google Scholar 

  32. Rauschenberger M, Schrepp M, Cota MP, Olschner S, Thomaschewski J (2013) Efficient measurement of the user experience of interactive products. How to use the user experience questionnaire (UEQ). Example: Spanish language version. Int J Interact Multimed Artif Intell 2(1):39–45. https://doi.org/10.9781/ijimai.2013.215

    Article  Google Scholar 

  33. Rosenthal S, Farra N, Nakov P (2017) SemEval-2017 task 4: sentiment analysis in Twitter. In: Proceedings of the 11th international workshop on semantic evaluation (SemEval-2017). Association for Computational Linguistics, Vancouver, Canada, pp 502–518. https://doi.org/10.18653/v1/S17-2088. https://www.aclweb.org/anthology/S17-2088

  34. Sadr H, Pedram MM, Teshnehlab M (2019) A robust sentiment analysis method based on sequential combination of convolutional and recursive neural networks. Neural Process Lett 50:2745–2761. https://doi.org/10.1007/s11063-019-10049-1

    Article  Google Scholar 

  35. Sanchis-Font R, Castro-Bleda M, González J (2019) Applying sentiment analysis with cross-domain models to evaluate user experience in virtual learning environments. In: Rojas I, Joya G, Catala A (eds) Advances in computational intelligence. IWANN (2019). Lecture notes in computer science, vol 11506. Springer, Cham, pp 609–620

    Google Scholar 

  36. Schuster M, Paliwal K (1997) Bidirectional recurrent neural networks. Trans Signal Process 45(11):2673–2681. https://doi.org/10.1109/78.650093

    Article  Google Scholar 

  37. Scott WA (1955) Reliability of content analysis: the case of nominal scale coding. Public Opin Q 19(3):321–325. https://doi.org/10.1086/266577

    Article  Google Scholar 

  38. Socher R, Perelygin A, Wu J, Chuang J, Manning CD, Ng A, Potts C (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 conference on empirical methods in natural language processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642. https://www.aclweb.org/anthology/D13-1170

  39. Turney PD (2002) Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: ACL, pp 417–424. http://www.aclweb.org/anthology/P02-1053.pdf

  40. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In: Proceedings of the 31st international conference on neural information processing systems, NIPS’17. Curran Associates Inc., USA, pp 6000–6010. http://dl.acm.org/citation.cfm?id=3295222.3295349

  41. Wilson T, Hoffmann P, Somasundaran S, Kessler J, Wiebe J, Choi Y, Cardie C, Riloff E, Patwardhan S (2005) OpinionFinder: a system for subjectivity analysis. In: Proceedings of HLT/EMNLP on interactive demonstrations. Association for Computational Linguistics, pp 34–35

  42. Zaharias P, Mehlenbacher B (2012) Editorial: exploring user experience (UX) in virtual learning environments. Int J Hum Comput Stud 70(7):475–477. https://doi.org/10.1016/j.ijhcs.2012.05.001

    Article  Google Scholar 

  43. Zhang L, Wang S, Liu B (2018) Deep learning for sentiment analysis: a survey. Wiley Interdiscip Rev Data Min Knowl Discov 8(4):e1253

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks to the following biomedical organizations: Fundación IVI and Medigene Press S.L.; both have provided data from their Master and Posgraduate Courses through the academic stay research of Rosario Sanchis-Font, during 2017 and 2018. Many thanks to Carlos Turró-Ribalta and Ignacio Despujol-Zabala for supporting this research with data from UPV MOOCs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Jose Castro-Bleda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by the Spanish MINECO and FEDER founds under Project TIN2017-85854-C4-2-R. Work of J.A. González is financed under Grant PAID-01-17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchis-Font, R., Castro-Bleda, M.J., González, JÁ. et al. Cross-Domain Polarity Models to Evaluate User eXperience in E-learning. Neural Process Lett 53, 3199–3215 (2021). https://doi.org/10.1007/s11063-020-10260-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-020-10260-5

Keywords

Navigation