Skip to main content
Log in

On the application of fractional calculus for the formulation of viscoelastic Reddy beam

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The focus of the current work is to present the bending analysis of visco-elastic beams based on Reddy’s third-order shear deformation theory. Fractional calculus is taken into account for dealing with the fractional derivative terms, able to better describe the damping behaviour of any visco-elastic material. Numerical analyses of beams with different boundary conditions have been proposed and discussed following two different approaches, namely the finite element method and the Galerkin method. An assessment of the proposed approach is presented by comparing the computed solutions with those obtained with the classical and first-order shear deformation theories available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Nutting PG (1921) A new general law deformation. J Frankl Inst 191:678–685

    Article  Google Scholar 

  2. Gemant A (1936) A method of analyzing experimental results obtained by elasto-viscous bodies. Phisics 7:311–317

    ADS  Google Scholar 

  3. Oldham KB, Spanier J (1974) The fractional calculus. Accademic Press, New York

    MATH  Google Scholar 

  4. Di Paola M, Pirrotta A, Valenza A (2011) Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results. Mech Mater 43:799–806

    Article  Google Scholar 

  5. Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to voscoelasticity. J Rheol 27:201–210

    Article  ADS  Google Scholar 

  6. Mainardi F, Gorenflo R (2007) Time-fractional derivatives in relaxation processes: a tutorial survey. Fract Calc Appl Anal 10(3):269–308

    MathSciNet  MATH  Google Scholar 

  7. Celauro C, Fecarotti C, Pirrotta A, Collop AC (2012) Experimental validation of a fractional model for creep/recovery testing of asphalt mixtures. Constr Build Mater 36:458–466

    Article  Google Scholar 

  8. Timosenko S (1953) History of strength of materials. McGraw-Hill, New York

    Google Scholar 

  9. Di Paola M, Heuer R, Pirrotta A (2013) Fractional visco-elastic Euler–Bernoulli beam. Int J Solids Struct 50:3505–3510

    Article  Google Scholar 

  10. Chunxiao Y, Je Z, Timing C, Yujing F, Aimin Y (2019) A numerical method for solving fractional-order visco-elastic Euler–Bernoulli beams. Chaos Solitons Fractals 128:275–279

    Article  MathSciNet  Google Scholar 

  11. Sumelka W, Blaszczyk T, Liebold C (2015) Fractional Euler–Bernoulli beams: theory, numerical study and experimental validation. Eur J Mech A Solids 54:243–251

    Article  MathSciNet  Google Scholar 

  12. Timoshenko SP (1921) On the correction factor for shear of the differential equation for transverse vibrations of bars of uniform cross-section. Philos Mag 41:744–746

    Article  Google Scholar 

  13. Pirrotta A, Cutrona S, Di Lorenza S, Di Matteo A (2015) Fractional visco-elastic Timoshenko beam deflection via single equation. Int J Numer Methods Eng 104:869–886

    Article  MathSciNet  Google Scholar 

  14. Pirrotta A, Cutrona S, Di Lorenzo S (2015) Fractional visco-elastic Timoshenko beam form elastic Euler–Bernoulli beam. Acta Mech 226:179–189

    Article  MathSciNet  Google Scholar 

  15. Alotta G, Failla G, Zingales M (2017) Finite-element formulation of a nonlocal hereditary fractional-order Timoshenko beam. J Eng Mech 143(5):D4015001

    Article  Google Scholar 

  16. Alotta G, Failla G, Zingales M (2014) Finite-element method for a nonlocal Timoshenko beam model. Finite Elem Anal Des 89:77–92

    Article  Google Scholar 

  17. Liew KM, Huang YQ (2003) Bending and buckling of thick symmetric rectangular laminates using the moving least-squares differential quadrature method. Int J Mech Sci 45:95–114

    Article  Google Scholar 

  18. Aydogdu M (2005) Vibration analysis of cross-ply laminated beams with general boundary conditions by Ritz method. Int J Mech Sci 47:1740–1755

    Article  Google Scholar 

  19. Marur SR, Kant T (1996) Free vibration analysis of fiber reinforced composite beams using higher order theories and finite element modelling. J Sound Vib 194:337–351

    Article  ADS  Google Scholar 

  20. Vidal P, Polit O (2008) A family of sinus finite element for the analysis of rectangular laminated beams. Compos Struct 84(1):56–72

    Article  Google Scholar 

  21. Soldatos KP, Elishakoff I (1992) A transverse shear and normal deformable orthotropic beam theory. J Sound Vib 155(3):528–533

    Article  ADS  Google Scholar 

  22. Heyliger PR, Reddy JN (1988) A higher order beam finite element for bending and vibration problems. J Sound Vib 126(2):309–326

    Article  ADS  Google Scholar 

  23. Reddy JN (1997) On locking-free shear deformable beam finite element methods. Comput Methods Appl Mech Eng 149:113–132

    Article  ADS  Google Scholar 

  24. Polizzotto C (2015) From the Euler-Bernoulli beam to the Timoshenko one through a sequence of Reddy-type shear deformable beam models of increasing order. Eur J Mech A Solids 53:62–74

    Article  MathSciNet  Google Scholar 

  25. Chen W, Weiwei C, Sze KY (2012) A model od composite laminated Reddy beam based on a modified couple-stress theory. Compos Struct 94(8):2599–2609

    Article  Google Scholar 

  26. Ruocco E, Reddy JN (2019) A Closed-form solution for buckling analysis of orthotropic Reddy plates and prismatic plate structures. Compos B 169:258–273

    Article  Google Scholar 

  27. Ruocco E, Reddy JN (2019) Shortening effect on the buckling behaviour of Reddy plates and prismatic plate structures. Int J Struct Stab Dyn 19(04):1950048

    Article  MathSciNet  Google Scholar 

  28. Payette GS, Reddy JN (2013) A nonlinear finite element framework for viscoelastic beams based on the high-order Reddy beam theory. J Eng Mater Technol 135(1):011005

    Article  Google Scholar 

  29. Jin G, Yang C, Liu Z (2016) Vibration and damping analysis of sandwich viscoelastic-core beam using Reddy’s higher-order theory. Compos Struct 140:390–409

    Article  Google Scholar 

  30. Alotta G, Barrera O, Cocks ACF, Di Paola M (2017) On the behavior of a three-dimensional fractional viscoelastic contitutive model. Meccanica 52:2127–2142

    Article  MathSciNet  Google Scholar 

  31. Flugge W (1967) Viscoelasticity. Blaisdell Publishing Company, Waltham

    MATH  Google Scholar 

  32. Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45:288–307

    Article  Google Scholar 

  33. Reddy JN (2019) An introduction to the finite element method, 4th edn. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ruocco.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Paola, M., Reddy, J.N. & Ruocco, E. On the application of fractional calculus for the formulation of viscoelastic Reddy beam. Meccanica 55, 1365–1378 (2020). https://doi.org/10.1007/s11012-020-01177-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-020-01177-3

Keywords

Navigation