Skip to main content

Advertisement

Log in

Influence of land-use/land-cover change on landscape connectivity for an endemic threatened amphibian (Argenteohyla siemersi pederseni, Anura: Hylidae)

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Modifications in natural landcover generally result in a loss of habitat availability for wildlife and it’s persistence will depend largely on their spatial configuration and functional connections. Argenteohyla siemersi is a threatened and endemic amphibian whose habitat is composed of forest patches near rivers and water bodies edges.

Objectives

This study aimed to analyse the accessible habitat for this species and identify key elements to maintain its ecological network in two different types of land uses: an anthropized area with extensive cattle raising and a protected area.

Methods

The structural and functional characteristics of both landscapes were analyzed. The connectivity at landscape level and the contribution of each habitat patch were evaluated through simulation models with different dispersion distances in the context of the graph theory.

Results

In both landscapes, nine types of landcover were identified with different compositions. Remarkable differences were found in habitat connectivity for this amphibian species between both landscapes. As the percentage of dispersion distance increases, reachable habitat increases as well, although with higher percentages in the protected area. Two corridors were identified in the protected landscape and one in the rangeland one; patches and key links constituted all of them.

Conclusions

The present work provides spatially explicit results with a quantitative basis. It could be useful as a tool for the development of management plans aimed at guaranteeing the functionality of the ecological network for this endangered species and, therefore, contribute to its long-term conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urban Plann 64(4):233–247

    Article  Google Scholar 

  • Alex Smith M, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28(1):110–128

    Article  Google Scholar 

  • Álvarez B, Aguirre R, Céspedez J, Hernando A, Tedesco M (2002) Anfibios y reptiles del sistema Iberá. Comunicaciones Científicas y Tecnológicas, UNNE, Corrientes

    Google Scholar 

  • APN (2002) Plan de manejo del Parque Nacional Mburucuyá. Administración de Parques Nacionales, Delegación Técnica Regional Nordeste Argentino. 189 pp. https://sib.gob.ar/archivos/PLAN_DE_MANEJO_Mburucuya.pdf. Accessed 05 Jan 2017

  • Arbo MM (2004) Flórula del Parque Nacional Mburucuyá. Temas de la Biodiversidad del Litoral Fluvial Argentino, Insugeo, Miscelánea 12:117–124

    Google Scholar 

  • Becker CG, Fonseca CR, Haddad CFB, Batista RF, Prado PI (2007) Habitat split and the global decline of amphibians. Science 318(5857):1775–1777

    Article  CAS  PubMed  Google Scholar 

  • Begon M, Harper JL, Townsend CR (1999) Ecología: individuos, poblaciones y comunidades. In: Omega (ed), Barcelona. pp 1148

  • Blaustein AR, Wake DB (1990) Declining amphibian populations: a global phenomenon? Trends Ecol Evol 5(7):203–204

    Article  Google Scholar 

  • Bodin Ö, Saura S (2010) Ranking individual habitat patches as connectivity providers: integrating network analysis and patch removal experiments. Ecol Modell 221(19):2393–2405

    Article  Google Scholar 

  • Boitani L, Falcucci A, Maiorano L, Rondinini C (2007) Ecological networks as conceptual frameworks or operational tools in conservation. Conserv Biol 21(6):1414–1422

    Article  PubMed  Google Scholar 

  • Brea M, Zucol A (2011) The Paraná-Paraguay Basin: geology and Paleoenvironments. Hist Biogeogr Neotrop Freshw Fish 1:69–87

    Google Scholar 

  • Cajade R, Hermida G, Piñeiro JM, Regueira E, Alcalde L, Fusco LS, Marangoni F (2017) Multiple anti-predator mechanisms in the red-spotted Argentina Frog (Amphibia: Hylidae). J Zool 302(2):94–107

    Article  Google Scholar 

  • Cajade R, Marangoni F, Gangenova E (2013) Age, body size and growth pattern of Argenteohyla siemersi pederseni (Anura: Hylidae) in northeastern Argentina. J Nat Hist 47(3–4):237–251

    Article  Google Scholar 

  • Cajade R, Schaefer EF, Duré MI, Kehr AI, Marangoni F (2010) Reproductive biology of Argenteohyla siemersi pederseni Williams and Bosso, (Anura: Hylidae) in northeastern Argentina. J Nat Hist 44(31–32):1953–1978

    Article  Google Scholar 

  • CBD (2010) Strategic plan for biodiversity 2011–2020 and the Aichi targets. In Report of the tenth meeting of the conference of the parties to the convention on biological diversity (COP10). https://www.cbd.int/doc/strategic-plan/2011-2020/Aichi-Targets-EN.pdf. Accessed 10 Mar 2019

  • Céspedez JA (2000) Historia natural de la rana de Pedersen Argenteohyla siemersi pederseni (Anura: Hylidae), y descripción de su larva. Boletin de la Asociación Herpetologica Española 11(2):75–80

    Google Scholar 

  • Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S (2000) Consequences of changing biodiversity. Nature 405(6783):234–242

    Article  CAS  PubMed  Google Scholar 

  • Chazdon RL (2003) Tropical forest recovery: legacies of human impact and natural disturbances. Perspect Plant Ecol Evol Syst 6(1–2):51–71

    Article  Google Scholar 

  • Clauzel C, Bannwarth C, Foltete JC (2015) Integrating regional-scale connectivity in habitat restoration: an application for amphibian conservation in eastern France. J Nat Conserv 23:98–107

    Article  Google Scholar 

  • Contreras FI (2011) Evolución de las lagunas en función de la pendiente, Lomada Norte. Provincia Corrientes, Argentina. Terra Nueva Etapa 27(42):145–163

    Google Scholar 

  • Corn PS, Fogleman JC (1984) Extinction of montane populations of the Northern Leopard Frog (Rana pipiens) in Colorado. J Herpetol 18(2):147–152

    Article  Google Scholar 

  • Crooks KR, Sanjayan M (2006) Connectivity conservation: maintaining connections for nature. In: Crooks KR, Sanjayan M (eds) Connectivity conservation. Cambridge University Press, Cambridge, p 693

    Chapter  Google Scholar 

  • Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128(2):231–240

    Article  Google Scholar 

  • Decout S, Manel S, Miaud C, Luque S (2012) Integrative approach for landscape-based graph connectivity analysis: a case study with the common frog (Rana temporaria) in human-dominated landscapes. Landsc Ecol 27(2):267–279

    Article  Google Scholar 

  • Diminich MC, Zaracho VH (2008) Argenteohyla siemersi pederseni. Reproduction. Natural History Note. Herpetol Rev 39:74–75

    Google Scholar 

  • ESRI (2011) Release 10. Documentation Manual. Redlands, CA, Environmental Systems Research Institute. ESRI Press, California, USA

  • Fahrig L (2007) Non-optimal animal movement in human-altered landscapes. Funct Ecol 21(6):1003–1015

    Article  Google Scholar 

  • Fahrig L, Pedlar JH, Pope SE, Taylor PD, Wegner JF (1995) Effect of road traffic on amphibian density. Biol Conserv 73(3):177–182

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16(3):265–280

    Article  Google Scholar 

  • Forclaz HL (2001) Uso económico del espacio y los recursos naturales. Reunión de Comunicaciones Científicas y Técnológicas, Universidad Nacional del Nordeste, Resistencia, Chaco, Argentina, octubre de 2000. https://www.revistacyt.unne.edu.ar/unnevieja/Web/cyt/cyt/2001/5-Agrarias/A-008.pdf. Accessed 26 July 2017

  • Forman RT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge, p 632

    Book  Google Scholar 

  • Forman RT, Alexander LE (1998) Roads and their major ecological effects. Annu Rev Ecol Syst 29(1):207–231

    Article  Google Scholar 

  • Fraterrigo JM, Pearson SM, Turner MG (2009) Joint effects of habitat configuration and temporal stochasticity on population dynamics. Landsc Ecol 24(7):863–877

    Article  Google Scholar 

  • Gardner RC, Barchiesi S, Beltrame C, Finlayson C, Galewski T, Harrison I, Paganini M, Perennou C, Pritchard D, Rosenqvist A, Walpole M (2015) State of the world's wetlands and their services to people: a compilation of recent analyses. Available at: https://www.ramsar.org/sites/default/files/documents/library/bn7e_0.pdf. Accessed 14 Aug 2018

  • Ghazoul J, Chazdon R (2017) Degradation and recovery in changing forest landscapes: a multiscale conceptual framework. Annu Rev Environ Resour 42:161–188

    Article  Google Scholar 

  • Grosse WR, Nöllert A (1993) The aquatic habitat of the European tree frog, Hyla arborea. In: Stumpel AHP, Tester U (eds) Ecology and conservation of the European tree frog. Institute for Forestry and Nature Research, Wageningen, pp 37–46

    Google Scholar 

  • Gurrutxaga M, Saura S (2013) Prioritizing highway defragmentation locations for restoring landscape connectivity. Environ Conserv 41(2):157–164

    Article  Google Scholar 

  • Hanski I (2005) Landscape fragmentation, biodiversity loss and the societal response. EMBO Rep 6(5):388–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanski I, Gilpin M (1991) Metapopulation dynamics: brief history and conceptual domain. Biol J Linn Soc 42(1–2):3–16

    Article  Google Scholar 

  • IUCN (2019) The IUCN Red List of Threatened Species. Version 2019–2. https://www.iucnredlist.org. Accessed 24 July 2019

  • Joly P, Miaud C, Lehmann A, Grolet O (2001) Habitat matrix effects on pond occupancy in newts. Conserv Biol 15(1):239–248

    Article  Google Scholar 

  • Joly P, Morand C, Cohas A (2003) Habitat fragmentation and amphibian conservation: building a tool for assessing landscape matrix connectivity. CR Biol 326:132–139

    Article  Google Scholar 

  • Kerr JT, Deguise I (2004) Habitat loss and the limits to endangered species recovery. Ecol Lett 7(12):1163–1169

    Article  Google Scholar 

  • Kindlmann P, Burel F (2008) Connectivity measures: a review. Landsc Ecol 23(8):879–890

    Google Scholar 

  • Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke G, George PS, Homewood K, Imbernon J, Leemans R, Li X, Moran EF, Mortimore M, Ramakrishnan PS, Richards JF, Skanes H, Steffen W, Stone GD, Svedin U, Veldkamp TA, Vogel C, Xu J (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change 11(4):261–269

    Article  Google Scholar 

  • Lang S, Tiede D (2003) vLATE Extension für ArcGIS - vektorbasiertes Tool zur quantitativen Landschaftsstrukturanalyse [vLATE extension for ArcGIS – vector based tool for quantitative analyses of landscape structure], Salzburg. https://sites.google.com/site/largvlate/gis-tools/v-late. Accessed 3 Oct 2017

  • Lavilla E, Céspedez J, Baldo D, Blotto B, Langone J (2004) Argenteohyla siemersi. IUCN Red List Threat Species 2004:e.T55302A11285912

    Google Scholar 

  • Mazerolle MJ, Desrochers A (2005) Landscape resistance to frog movements. Can J Zool 83(3):455–464

    Article  Google Scholar 

  • McGarigal K, Marks BJ (1995) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. Department of Agriculture, Forest Service Pacific Northwest Research Station, Portland, Portland

    Book  Google Scholar 

  • McRae BH, Kavanagh DM (2011) Linkage mapper connectivity analysis software. The Nature Conservancy, Seattle

    Google Scholar 

  • Meza-Torres EI, de la Sota ER, Ferrucci MS (2013) Biogeographic analysis and key to the genera of ferns and lycophytes of Mburucuyá National Park, Corrientes, Argentina. Revista Chilena de Historial Natural 86:49–61

    Article  Google Scholar 

  • Middleton RG (2010) Cattle access affects periphyton community structure in Tennessee farm ponds. Master's Thesis, University of Tennessee, Knoxville. 89 pp. https://trace.tennessee.edu/utk_gradthes/732. Accessed 9 April 2019

  • Minor ES, Urban DL (2008) A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv Biol 22(2):297–307

    Article  PubMed  Google Scholar 

  • Mühlner S, Kormann U, Schmidt-Entling M, Herzog F, Bailey D (2010) Structural versus functional habitat connectivity measures to explain bird diversity in fragmented orchards. J Landsc Ecol 3(1):52–64

    Google Scholar 

  • Opdam P, van Apeldoorn R, Schotman A, Kalkhoven J (1993) Population responses to landscape fragmentation. Chap. 7 pp. In: Vos CC, Opdam P (eds) Landscape ecology of a stressed environment. Springer, Dordrecht, pp 147–171

    Chapter  Google Scholar 

  • Piñeiro JM, Cajade R, Courtis A, Ingaramo MdR, Marangoni F (2019) Chronology of the LAGs formation and body growth in Argenteohyla siemersi from northeastern Argentina. North-Western J Zool 2019:e182502

    Google Scholar 

  • Pollo FE, Martina LC, Bionda CL, Salas NE, Martino AL (2015) Trophic ecology of syntopic anuran larvae, Rhinella arenarum (Anura: Bufonidae) and Hypsiboas cordobae (Anura: Hylidae): its relation to the structure of periphyton. Annales de Limnologie-Int J Limnol 51(3):211–217

    Article  Google Scholar 

  • Popolizio E (1996) Las unidades geomorfológicas del NEA. En Actas del Congreso Nacional de Geografia. Sociedad Argentina de Estudios Geográficos pp 15

  • Ray N, Lehmann A, Joly P (2002) Modeling spatial distribution of amphibian populations: a GIS approach based on habitat matrix permeability. Biodivers Conserv 11(12):2143–2165

    Article  Google Scholar 

  • Rubio L, Rodríguez-Freire M, Mateo-Sánchez MC, Estreguil C, Saura S (2012) Sustaining forest landscape connectivity under different land cover change scenarios. For Syst 21(2):223–235

    Google Scholar 

  • Rustigian HL, Santelmann MV, Schumaker NH (2007) Amphibian population dynamics. In: Nassauer JI, Santelmann MV, Scavia D (eds) From the Corn Belt to the Gulf: Societal and environmental implications of alternative agricultural Futures. RFF Press, Washington, DC, pp 108–114

    Google Scholar 

  • Sahuquillo M, Miracle MR, Morata SM, Vicente E (2012) Nutrient dynamics in water and sediment of Mediterranean ponds across a wide hydroperiod gradient. Limnol-Ecol Manag Inland Waters 42(4):282–290

    Article  CAS  Google Scholar 

  • Saibene CS, Montanelli SB (1997) Mapeo de las comunidades vegetales leñosas del Parque Nacional Mburucuyá, Corrientes, Argentina. Facena 13:49–57

    Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, LeRoy Poff N, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Saura S, Estreguil C, Mouton C, Rodríguez-Freire M (2011) Network analysis to assess landscape connectivity trends: application to European forests (1990–2000). Ecol Indic 11(2):407–416

    Article  Google Scholar 

  • Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plann 83(2–3):91–103

    Article  Google Scholar 

  • Saura S, Rubio L (2010) A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33(3):523–537

    Google Scholar 

  • Saura S, Torné J (2009) Conefor Sensinode 2.2: a software package for quantifying the importance of habitat patches for landscape connectivity. Environ Modell Softw 24(1):135–139

    Article  Google Scholar 

  • Schivo F (2015) Modelos de respuestas de anfibios frente a cambios ambientales en humedales de Corrientes (Doctoral dissertation). Universidad de Buenos Aires, Argentina. 210 pp. https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n5688_Schivo.pdf. Accessed 18 June 2018

  • Stebbins RC, Cohen NW (1995) A natural history of amphibians. Princeton University Press, Princeton, p 316

    Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Article  Google Scholar 

  • Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82(5):1205–1218

    Article  Google Scholar 

  • Wiens JA (2001) The landscape context of dispersal. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) Dispersal. Oxford University Press, New York, p 480

    Google Scholar 

  • Wiens JA, Chr N, Van Horne B, Ims RA (1993) Ecological mechanisms and landscape ecology. Oikos 66:369–380

    Article  Google Scholar 

  • Williams JD, Bosso A (1994) Estado sistemático y distribución geográfica de Argenteohyla siemersi (Mertens, 1937) en la República Argentina (Anura: Hylidae). Cuadernos de Herpetologia 8:57–62

    Google Scholar 

  • With KA (1997) The application of neutral landscape models in conservation biology. Conserv Biol 11(5):1069–1080

    Article  Google Scholar 

  • Woltz HW, Gibbs JP, Ducey PK (2008) Road crossing structures for amphibians and reptiles: informing design through behavioural analysis. Biol Conserv 141(11):2745–2750

    Article  Google Scholar 

  • Zaracho VH, Areta JI (2008) The advertisement call of Argenteohyla siemersi pederseni (Amphibia, Anura, Hylidae) and comments on its taxonomic status. FACENA 24:49–57

    Article  Google Scholar 

  • Zemanova MA, Perotto-Baldivieso HL, Dickins EL, Gill AB, Leonard JP, Wester DB (2017) Impact of deforestation on habitat connectivity thresholds for large carnivores in tropical forests. Ecol Process 6(1):21

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina) and the European Union project CLARIS-LPB (Europe-South America Network for Climate Change Assessment and Impact Studies in La Plata Basin). We acknowledge the U.S. Geological Survey (USGS, https://earthexplorer.usgs.gov/) for facilitating satellite images through its EarthExplorer portal. To the teaching mobility program of the Ministerio de Educación for financing my training stay at the Universidad Politécnica de Madrid. Diego Aquino for his help with image classifications. To the International Union for Conservation of Nature that, through the Red List of Threatened Species (IUCN, https://www.iucnredlist.org/), freely provides bibliographic information and the spatial distribution of thousands of species. We also thank the anonymous reviewers of the draft version of the manuscript for their constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Facundo Schivo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schivo, F., Mateo-Sánchez, M.C., Bauni, V. et al. Influence of land-use/land-cover change on landscape connectivity for an endemic threatened amphibian (Argenteohyla siemersi pederseni, Anura: Hylidae). Landscape Ecol 35, 1481–1494 (2020). https://doi.org/10.1007/s10980-020-01031-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-020-01031-7

Keywords

Navigation