Skip to main content
Log in

Transport Properties of Transitional Metal (Ni2+) Doped La0.67Ca0.33MnO3 Rare-Earth Manganites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The crystalline samples of La0.67Ca0.33Mn1-xNixO3 (x = 0, 0.05, and 0.1) manganites were prepared by conventional solid-state reaction method. The analysis of X-ray diffraction spectra revealed that all the prepared samples are single phased in nature and have acquired orthorhombic structure with space group Pbnm. Temperature-dependent dc resistivity measurements infer metallic nature of the samples in the lower temperature region (T > 50 K) where metal to insulator transition (TMI) occurs at temperature 238 K, 204 K, and 187 K for x = 0, 0.05, and 0.1, respectively. For the temperature below 50 K, a kind of transition from paramagnetic insulator to the ferromagnetic metallic phase was observed in all the materials. The application of magnetic field of 8 T indicates the shift of TMI toward the higher temperature region with high reduction in resistivity due to suppression of any thermal agitations present. The resistivity data analysis for conduction mechanism above 50 K infers that the grain/domain boundary scattering processes play a dominant role in the the metallic region. However, the analysis of the region below 50 K infers that weak localization effect is the responsible factor in conduction phenomena. Isothermal at 300 K for magnetoresistance study conveys that the pristine La0.67Ca0.33MnO3 manganite exhibits larger MR effect with rise in magnetic field compared to doped ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dagotto, E., Hotta, T., Moreo, A.: Phys. Rep. 344, 1 (2001)

    Article  ADS  Google Scholar 

  2. Vanitha, P.V., Singh, R.S., Natarajan, S., Rao, C.N.R.: Solid State Commun. 109, 135 (1999)

    Article  ADS  Google Scholar 

  3. Kim, M.W., Moon, S.J., Jung, J.H., Yu, J., Parashar, S., Murugavel, P., Lee, J.H., Noh, T.W.: Phys. Rev. Lett. 96, 247205 (2006)

    Article  ADS  Google Scholar 

  4. Massaa, N.E., Tolentinob, H.C.N., Salvac, H., Alonsod, J.A., Martinez-Loped, M.J., Casais, M.T.: J. Magn. Magn. Mater. 233, 91 (2001)

    Article  ADS  Google Scholar 

  5. Sun, Y., Xiaojun, Zhang, Y.: Phys. Rev. B. 63, 54404 (2000)

    Article  Google Scholar 

  6. Laajimi, K., Khlifi, M., Hill, E.K., Gazzah, M.H., Dhahri, J.: J. Magn. Magn. Mater. (2019). https://doi.org/10.1016/j.mmm.2019.165625

  7. Song, H., Kim, W., Kwon, S.-J.: J. Appl. Phys. 89, 3398 (2001)

    Article  ADS  Google Scholar 

  8. Pena, C.F., Soffner, M.E., Mansanares, A.M., Sampaio, J.A., Gandra, F.C.G., da Silva, E.C., Vargas, H.: Physica B. 523, 39 (2017)

    Article  ADS  Google Scholar 

  9. Schiffer, P., Ramirez, A.P., Bao, W., Cheong, S.W.: Phys. Rev. Lett. 75, 3336 (1995)

    Article  ADS  Google Scholar 

  10. Jin, S., McCormack, M., Tiefel, T.H., Ramesh, R.: J. Appl. Phys. 76, 6929 (1994)

    Article  ADS  Google Scholar 

  11. Wang, X.L., Gehringer, P., Lang, W., Horvat, J., Liu, H.K., Dou, S.X.: Solid State Commun. 117, 53 (2001)

    Article  ADS  Google Scholar 

  12. Awana, V.P.S., Tripathi, R., Balamurugan, S., Kumar, A., Dograa, A., Kishan, H.: J. Alloys Compd. 475, L13 (2009)

    Article  Google Scholar 

  13. Kumar, N., Kishan, H., Rao, A., Awana, V.P.S.: J. Alloys Compd. 502, 283 (2010)

    Article  Google Scholar 

  14. Kumar, N., Kishan, H., Rao, A., Awana, V.P.S.: J. Appl. Phys. 107, 083905 (2010)

    Article  ADS  Google Scholar 

  15. Korotana, R., Mallia, G., Gercsi, Z., Harrison, N.M.: J. Appl. Phys. 113, 17A910 (2013)

    Article  Google Scholar 

  16. Hcini, S., Zemni, S., Triki, A., Rahmouni, H., Boudard, M.: J. Alloys Compd. 509, 1394 (2011)

    Article  Google Scholar 

  17. Changshi, L.: J. Chem. Eng. Data. 56, 2 (2011)

    Article  Google Scholar 

  18. Surthia, S., Kotrua, S., Pandeya, R.K., Fournier, P.: Solid State Commun. 125, 107 (2003)

    Article  ADS  Google Scholar 

  19. Zhang, H., Wang, W.Z., Cui, Q., Ye, D., Ma, J., Chen, Q.M., Liu, X.: Trans. Nonferrous Metals Soc. China. 25, 465 (2015)

    Article  Google Scholar 

  20. Dar, M.A., Saleem, M., Mansuri, A., Mishra, A.: J. Inorg. Organomet. Polym. 29, 1485 (2019)

    Article  Google Scholar 

  21. Sinh, N.H., Khai, V.V., Thuong, N.T.: Proceedings of the 5th National Conference on Solid State Physics, vol. 12, Vungtau (2007)

Download references

Acknowledgments

UGC-DAE-CSR, Indore (M.P.) as an institute is acknowledged for extending its facilities. Authors acknowledge Dr. A. Benerjee, centre director at UGC-DAE-CSR; Dr. M. Gupta; and Dr. R. Rawat for careful characterization and guidance. Authors extend gratitude toward Mr. S. Dabaral and Mr. Lyantha of UGC-DAE CSR, Indore, for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saleem.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, M., Tiwari, S. & Mishra, A. Transport Properties of Transitional Metal (Ni2+) Doped La0.67Ca0.33MnO3 Rare-Earth Manganites. J Supercond Nov Magn 33, 2787–2794 (2020). https://doi.org/10.1007/s10948-020-05516-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05516-z

Keywords

PACS

Navigation