Skip to main content
Log in

Study on phonon spectra and heat capacities of CL-20/MTNP cocrystal and co-formers by density functional theory method

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The phonon spectra and heat capacities of 2, 4, 6, 8, 10, 12-hexanitrohexaazaisowurtzitane/1-methyl-3, 4, 5-trinitropyrazole (CL-20/MTNP) cocrystal and co-formers were calculated in the framework of DFT. By analyzing the phonon density of states (DOS), the energy flow directions and trigger bonds of cocrystal and co-formers have been obtained and the microscopic physical nature was revealed for thermal decomposition mechanism, detonation performance, and sensitivity. For CL-20/MTNP cocrystal, the phonon number of “doorway” modes and the characteristic vibrational frequencies Δωd are between those of its co-formers, which can provide the microscopic understanding for the ordering of impact sensitivity at experiment, ε-CL-20 > CL-20/MTNP > MTNP. In CL-20/MTNP cocrystal, more phonons and stronger phonon DOS peaks of CL-20 molecules than those of MTNP molecules mean cocrystalʼs detonation performance is mainly dominated by CL-20 molecules. The heat capacities obtained by the Debye model rise with elevated temperatures at 0–600 K and the order is ε-CL-20 > CL-20/MTNP > MTNP.

The phonon spectra and heat capacities of CL-20/MTNP cocrystal and co-formers were calculated by density functional theory (DFT). In CL-20/MTNP cocrystal, the detonation performance and impact sensitivity are mainly dominated by CL-20 molecules. The broken bonds caused by energy transfer may undergo a multi-phonon pumping process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statements

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Badgujar DM, Talawar MB, Asthana SN, Mahulikara PP (2008) Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 151(2–3):289–305. https://doi.org/10.1016/j.jhazmat.2007.10.039

    Article  CAS  PubMed  Google Scholar 

  2. Sikder AK, Sikder N (2004) A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater 112(1–2):1–15. https://doi.org/10.1016/j.jhazmat.2004.04.003

    Article  CAS  PubMed  Google Scholar 

  3. Ning L, Binghui D, Xianming L, Hongchang M (2018) Preparation of CL-20/DNDAP cocrystals by a rapid and continuous spray drying method: an alternative to cocrystal formation. CrystEngComm 20(14):2060–2067. https://doi.org/10.1039/C8CE00006A

    Article  Google Scholar 

  4. Wu Q, Zhu W, Xiao H (2014) Periodic DFT study of structural, electronic, absorption, and thermodynamic properties of crystalline α-RDX under hydrostatic compression. Struct Chem 25(2):451–461. https://doi.org/10.1007/s11224-013-0306-1

    Article  CAS  Google Scholar 

  5. Weijia H, Yanqing W, Fenglei H, Xinjie PW (2018) Numerical simulation analyses of β ↔ δ phase transition for a finite-sized HMX single crystal subjected to thermal loading. RSC Adv 8(44):24873–24882. https://doi.org/10.1039/C8RA02649A

    Article  Google Scholar 

  6. Bochen P, Leping D, Zhanzhong W, Jun J (2018) Preparation, crystal structure and solution-mediated phase transformation of a novel solid-state form of CL-20. Crystengcomm 20:1553–1563. https://doi.org/10.1039/C7CE02026K

    Article  Google Scholar 

  7. Chan G, Xueyong Z, Chuanchao Z, Zhilei S, Meng H, Rucheng D, Zhongping W, Xianxu Z, Zengming Z (2018) Effect of pressure gradient and new phases for 1,3,5-trinitrohexahydro-s-triazine (RDX) under high pressures. Phys Chem Chem Phys 20:14374–14383. https://doi.org/10.1039/C8CP01192C

    Article  Google Scholar 

  8. Junfeng W, Shusen C, Shaohua J, Rui S, Zhenfeng Y, Qiang S, Xiao M, Chunyuan Z, Qingha S (2018) The primary decomposition product of TKX-50 under adiabatic condition and its thermal decomposition. J Therm Anal Calorim 134:2049–2056. https://doi.org/10.1007/s10973-018-7820-8

    Article  CAS  Google Scholar 

  9. Glascoe EA, Zaug JM, Armstrong MR, Crowhurst JC, Grant CD, Friedl LE (2009) Nanosecond time-resolved and steady-state infrared studies of photoinduced decomposition of TATB at ambient and elevated pressure. J Phys Chem A 113(20):5881–5887. https://doi.org/10.1021/jp809418a

    Article  CAS  PubMed  Google Scholar 

  10. Chuanqiang J, Tao S, Xiaoya L, Zhenwei Z, Gang J (2013) Synthesis and performance of 2-dinitromethyl-5-nitrotetrazole. Chin J Energetic Mater 21(4):434–438

    Google Scholar 

  11. Isayev O, Leonid G, Qasim M, Leszczynski J (2008) Ab initio molecular dynamics study on the initial chemical events in nitramines: thermal decomposition of CL-20. J Phys Chem B 112(35):11005–11013. https://doi.org/10.1021/jp804765m

    Article  CAS  PubMed  Google Scholar 

  12. Dong X, Qiong W, Wehua Z (2018) Ab initio molecular dynamics studies on the decomposition mechanisms of CL-20 crystal under extreme conditions. Chin J Energetic Mater 26(1):59–65

    Google Scholar 

  13. Wang H, Stalnaker J, Chevreau H, Lewisal JP (2008) Potential of mean force calculations using ab initio tight-binding molecular dynamics: application to N–NO2 bond dissociation in DMNA and HMX. Chem Phys Lett 457(1–3):26–30. https://doi.org/10.1016/j.cplett.2008.03.064

    Article  CAS  Google Scholar 

  14. Dezhou G, Qi A, Sergey Z, William AG (2015) The co-crystal of TNT/CL-20 leads to decreased sensitivity toward thermal decomposition from first principles based reactive molecular dynamics. J Mater Chem A 3(10):5409–5419. https://doi.org/10.1039/C4TA06858K

    Article  CAS  Google Scholar 

  15. Sergeev OV, Yanilkin AV (2017) Hydrogen transfer in energetic materials from ReaxFF and DFT calculations. J Phys Chem A 121(16):3019–3027. https://doi.org/10.1021/acs.jpca.6b13088

    Article  CAS  PubMed  Google Scholar 

  16. Qian W, Weibin Z, Hehong Z, Guofang G, Yang Z, Chaoyang Z (2016) Vibrational properties, phonon spectrum and related thermal parameters of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: a theoretical study. J Mol Model 22(1):1–9. https://doi.org/10.1007/s00894-015-2877-9

    Article  CAS  Google Scholar 

  17. Turney JE (2009) Predicting phonon properties and thermal conductivity using anharmonic lattice dynamics calculations. Phys Rev B 70(6):7715–7722

    Google Scholar 

  18. Larkin JM, Mcgaughey AJH (2013) Predicting alloy vibrational mode properties using lattice dynamics calculations, molecular dynamics simulations, and the virtual crystal approximation. J Appl Phys 114(2):023507(1–14). https://doi.org/10.1063/1.4812737

    Article  CAS  Google Scholar 

  19. Kim E, Weck PF, Borjas R, Poineau F (2018) Lattice dynamics and thermomechanical properties of zirconium (IV) chloride: evidence for low-temperature negative thermal expansion. Chem Phys Lett 691:98–102. https://doi.org/10.1016/j.cplett.2017.10.065

    Article  CAS  Google Scholar 

  20. 黄昆 (1979) 固体物理学. 高等教育出版社

  21. Benqiong L, Jianming S, Webin Z, Luo W (2016) Inelastic neutron scattering and ab initio studies of cyclotrimethylenetrinitramine. Acta Phys Sin 65(4):290–296

    Google Scholar 

  22. Ciezak JA, Trevino SF (2006) Inelastic neutron scattering spectrum of cyclotrimethylenetrinitramine: a comparison with solid-state electronic structure calculations. J Phys Chem A 110(15):5149–5155. https://doi.org/10.1021/jp057098u

    Article  CAS  PubMed  Google Scholar 

  23. Burkel E (2000) Phonon spectroscopy by inelastic x-ray scattering. Rep Prog Phys 63(2):171–232

    Article  CAS  Google Scholar 

  24. Kraczek B, Chung PW (2013) Investigation of direct and indirect phonon-mediated bond excitation in α-RDX. J Chem Phys 138(7):074505 (1–10). https://doi.org/10.1063/1.4790637

    Article  CAS  Google Scholar 

  25. Bernstein J (2018) Ab initio study of energy transfer rates and impact sensitivities of crystalline explosives. J Chem Phys 148(8):084502(1–7). https://doi.org/10.1063/1.5012989

    Article  CAS  Google Scholar 

  26. Wencan J, Hua C, Weibin Z (2016) First-principles study of the phonon spectrum and heat capacity of TATB crystal. Acta Phys Sin 65(12):126301(1–9)

    Google Scholar 

  27. Ciezak JA, Trevino SF (2005) Theoretical and experimental study of the inelastic neutron scattering spectra of β-5-Nitro-2,4-dihydro-3H-1,2,4-triazol-3-one. J Mol Struct Theochem 732(1):211–218. https://doi.org/10.1016/j.theochem.2005.07.022

    Article  CAS  Google Scholar 

  28. Michalchuk AAL, Trestman M, Rudic S, Portius P, Fincham PT, Pulham C, Morrison CA (2019) Predicting the reactivity of energetic materials: an ab initio multi-phonon approach. J Mater Chem A 7:19539–19553. https://doi.org/10.1039/C9TA06209B

    Article  CAS  Google Scholar 

  29. Guiyun H, Wenli Y, Tao W, Jintao W (2019) Theoretical investigations on structures, stability, energetic performance, sensitivity, and mechanical properties of CL-20/TNT/HMX cocrystal explosives by molecular dynamics simulation. J Mol Model 25(1):10–25. https://doi.org/10.1007/s00894-018-3887-1

    Article  CAS  Google Scholar 

  30. Lu S, Xiaohui D, Liguo Z, Chonghua P (2016) Directly insight into the inter- and intramolecular interactions of CL-20/TNT energetic cocrystal through the theoretical simulations of THz spectroscopy. J Phys Chem A 120(8):1160–1167. https://doi.org/10.1021/acs.jpca.5b10782

    Article  CAS  Google Scholar 

  31. Chaoyang Z, Yaofeng C, Hongzhen L, Yang Z (2013) Toward low-sensitive and high-energetic cocrystal I: evaluation of the power and the safety of observed energetic cocrystals. CrystEngComm 15(19):4003–4014. https://doi.org/10.1039/C3CE40112J

    Article  Google Scholar 

  32. Anderson SR, Pascal D, Krawiec M, Salan JS (2016) Promising CL-20-based energetic material by cocrystallization. Propellants Explos Pyrotechnics 41:783–788. https://doi.org/10.1002/prep.201600065

    Article  CAS  Google Scholar 

  33. Zongwei Y, Yanli Z, Hongzhen L, Xiaoqing Z, Fude N, Jinshan L, Hui H (2012) Preparation, structures and properties of CL-20/TNT cocrystal. Chin J Energetic Mater 20(6):674–679

    Google Scholar 

  34. Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) High power explosive with good sensitivity: a 2:1 cocrystal of CL-20:HMX. Cryst Growth Des 12(9):4311–4314. https://doi.org/10.1021/cg3010882

    Article  CAS  Google Scholar 

  35. Xiaolan S, Yi W, Shanshan Z, Fengsheng L (2018) Mechanochemical fabrication and properties of CL-20/RDX nano co/mixed crystals. RSC Adv 8(59):34126–34135. https://doi.org/10.1039/C8RA04122A

    Article  Google Scholar 

  36. Guangrui L, Hongzhen L, Ruijun G, Chaoyang Z (2018) Packing structures of the CL-20-based cocrystals. Cryst Growth Des 18(11):7065–7078. https://doi.org/10.1021/acs.cgd.8b01228

    Article  CAS  Google Scholar 

  37. Haobin Z, Cangyan G, Xiaochuan W, Jinjiang X, Xuan H, Yu L, Xiaofeng L, Hui H, Su J (2013) Five energetic cocrystals of BTF by intermolecular hydrogen bond and π-stacking interactions. Cryst Growth Des 13(2):679–687. https://doi.org/10.1021/cg301353f

    Article  CAS  Google Scholar 

  38. Foroughi LM, Wiscons RA, Du Bois DR, Matzger AJ (2020) Improving stability of the metal-free primary energetic cyanuric triazide (CTA) through cocrystallization. Chem Commun 56:2111–2114. https://doi.org/10.1039/C9CC09465B

    Article  CAS  Google Scholar 

  39. Qing M, Tao J, Yu C, Ya C, Jun W, Jinlun H, Fude N (2017) A novel multi-nitrogen 2,4,6,8,10,12- hexanitrohexaazaisowurtzitane-based energetic co-crystal with 1-methyl-3,4,5-trinitropyrazole as a donor: experimental and theoretical investigations of intermolecular interactions. New J Chem 41:4165–4172. https://doi.org/10.1039/C6NJ03976F

    Article  Google Scholar 

  40. Bolotina NB, Hardie MJ, Speer Jr RL, Pinkerton AA (2004) Energetic materials: variable-temperature crystal structures of γ- and ε-HNIW polymorphs. J Appl Crystallogr 37(5):808–814. https://doi.org/10.1107/S0021889804017832

    Article  CAS  Google Scholar 

  41. Clark SJ, Segallii MD, Pickardii CJ, Hasnipiii PJ, Probertiv MIJ (2005) First principles methods using CASTEP. Z Krist 220:567–570. https://doi.org/10.1524/zkri.220.5.567.65075

    Article  CAS  Google Scholar 

  42. Chan-Yang Z, Xianggui X, Yaofeng C, Junhong Z (2014) Toward low-sensitive and high-energetic co-crystal II: structural, electronic and energetic features of CL-20 polymorphs and the observed CL-20-based energetic–energetic co-crystals. CrystEngComm 16(26):5905–5916. https://doi.org/10.1039/C4CE00584H

    Article  Google Scholar 

  43. Michalchuk AAL, Fincham PT, Portius P, Pulham CR, Morrison CA (2018) A pathway to the athermal impact initiation of energetic azides. J Phys Chem C 122:19395–19408. https://doi.org/10.1021/acs.jpcc.8b05285

    Article  CAS  Google Scholar 

  44. Dlott DD (1986) Optical phonon dynamics in molecular crystals. Phys Chem 37(1):157–187. https://doi.org/10.1146/annurev.pc.37.100186.001105

    Article  CAS  Google Scholar 

  45. Dlott DD, Fayer MD (1990) Shocked molecular solids: vibrational up pumping, defect hot spot formation, and the onset of chemistry. J Chem Phys 92(6):3798–3812. https://doi.org/10.1063/1.457838

    Article  CAS  Google Scholar 

  46. Suhong G, Xinlu C, Lisha W, Xiangdong Y (2007) Correlation between normal mode vibrations and impactsensitivities of some secondary explosives. J Mol Struct Theochem 809(1):55–60. https://doi.org/10.1016/j.theochem.2007.01.011

    Article  CAS  Google Scholar 

  47. Naik NH, Gore GM, Gandhe BR, Sikder AK (2008) Studies on thermal decomposition mechanism of CL-20 by pyrolysis gas chromatography–mass spectrometry (Py-GC/MS). J Hazard Mater 159(2–3):630–635. https://doi.org/10.1016/j.jhazmat.2008.02.049

    Article  CAS  PubMed  Google Scholar 

  48. Ravi P, Gore GM, Sikder AK, Tewaria SP (2012) Thermal decomposition kinetics of 1-methyl-3,4,5-trinitropyrazole. Thermochim Acta 528:53–57. https://doi.org/10.1016/j.tca.2011.11.001

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Postgraduate Innovation Fund Project by Southwest University of Science and Technology (No.19ycx0026), National Natural Science Foundation of China (No.11572270), and Project of State Key Laboratory of Environmentally-Friendly Energy Materials, Southwest University of Science and Technology (No.18fksy0217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Hui Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Tao, J., Duan, XH. et al. Study on phonon spectra and heat capacities of CL-20/MTNP cocrystal and co-formers by density functional theory method. J Mol Model 26, 148 (2020). https://doi.org/10.1007/s00894-020-04415-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04415-3

Keywords

Navigation