Skip to main content
Log in

A Recent Overview of Microbes and Microbiome Preservation

  • Review article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Microbes are mediators in almost all ecosystem processes and act as a pivotal game changer in various ecological activities, globally. Therefore, understanding of microbial community structure and related functions in different environmental and micro-environmental niches is not only critical, but also a matter of greatest importance. Due to our inability to cultivate and preserve all sorts of microorganisms, we are losing some ecologically and industrially relevant components of microbial community, due to extinction caused by environmental and climatic variations with time. Intact sample and microbiome preservation are crucial for future cultivation as well as to study the effects of ecological and climatic variations on community functionality and shift with time, using OMICS. Although, methods for pure culture preservation are almost optimized, the techniques of microbiome preservation still remain as an unsolved challenge for microbiologists due to technical and physiological constraints. Present article discusses, recent approaches of microbial preservation with special reference to intact sample, mixed culture and microbiome preservation. It also incorporates recent practices used to achieve the highest viability and metabolic activities in long-term preserved microbiome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beardsley T (2016) Metagenomic reveals microbial diversity. Bioscience 56:192–196. https://doi.org/10.1641/0006-3568(2006)056[0192:MRMD]2.0.CO;2

    Article  Google Scholar 

  2. Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26. https://doi.org/10.1038/ja.2005.1

    Article  CAS  PubMed  Google Scholar 

  3. Singh BP, Rateb M, Rodriguez-Couto S, Polizeli MD, Li WJ (2019) Microbial secondary metabolites: recent developments and technological challenges. Front Microbiol 914:1–2. https://doi.org/10.3389/fmicb.2019.00914

    Article  Google Scholar 

  4. O’Brien J, Wright GD (2011) An ecological perspective of microbial secondary metabolism. Curr Opin Biotechnol 22:552–558. https://doi.org/10.1016/j.copbio.2011.03.010

    Article  CAS  PubMed  Google Scholar 

  5. Prakash O, Shouche YS, Jangid K (2013) Microbial cultivation and the role of microbial resource centers in the omics era. Appl Microbiol Biotechnol 53:247–252. https://doi.org/10.1007/s00253-012-4533-y

    Article  CAS  Google Scholar 

  6. Prakash O, Nimonkar Y, Shouche YS (2013) Practice and prospects of microbial preservation. FEMS Microbiol Lett 339:1–9. https://doi.org/10.1111/1574-6968.12034

    Article  CAS  PubMed  Google Scholar 

  7. Keswani C, Prakash O, Bharti N, Vílcheze JI, Sansinenea E, Lally RD, Borrissh R, Singh SP, Gupta VK, Fraceto LF, Limak R, Singh HB (2019) Re-addressing the biosafety issues of plant growth promoting rhizobacteria. Sci Total Environ 690:841–852

    Article  CAS  Google Scholar 

  8. Lemos LN, Fulthorpe RR, Triplett EW, Roesch LF (2011) Rethinking microbial diversity analysis in the high throughput sequencing era. J Microbiol Methods 86:42–51. https://doi.org/10.1016/j.mimet.2011.03.014

    Article  CAS  PubMed  Google Scholar 

  9. Alonso S (2016) Novel preservation techniques for microbial cultures. In: Ojha K, Tiwari S, Brijesh K (eds) Novel food fermentation technologies, 1st edn. Springer, Cham, pp 7–33. https://doi.org/10.1007/978-3-319-42457-6

    Chapter  Google Scholar 

  10. Wu GD, Lewis JD, Hoffmann C, Chen YY, Knight R, Bittinger K, Bushman FD (2010) Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags. BMC Microbiol 10:206. https://doi.org/10.1186/1471-2180-10-206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. West AG, Waite DW, Deines P, Bourne DG, Digby A, McKenzie VJ, Taylor MW (2019) The microbiome in threatened species conservation. Biol Conserv 229:85–98

    Article  Google Scholar 

  12. Bodelier P (2011) Toward understanding, managing, and protecting microbial ecosystems. Front Microbiol 80:1–8. https://doi.org/10.3389/fmicb.2011.00080

    Article  Google Scholar 

  13. Blaser MJ, Falkow S (2009) What are the consequences of the disappearing human microbiota? Nat Rev Microbiol 12:887–894. https://doi.org/10.1038/nrmicro2245

    Article  CAS  Google Scholar 

  14. Fraher MH, O’toole PW, Quigley EM (2012) Techniques used to characterize the gut microbiota: a guide for the clinician. Nat Rev Gastroenterol Hepatol 9:312. https://doi.org/10.1038/nrgastro.2012.44

    Article  CAS  PubMed  Google Scholar 

  15. Bello MG, Knight R, Gilbert JA, Blaser MJ (2018) Preserving microbial diversity. Science 362:33–34. https://doi.org/10.1126/science.aau8816

    Article  PubMed  Google Scholar 

  16. Terveer EM, van Beurden YH, Goorhuis A, Seegers JF, Bauer MP, van Nood E, Dijkgraaf MG, Mulder CJ, Vandenbroucke-Grauls CM, Verspaget HW, Keller JJ (2017) How to: establish and run a stool bank. Clin Microbiol Infect 23:924–930. https://doi.org/10.1016/j.cmi.2017.05.015

    Article  CAS  PubMed  Google Scholar 

  17. Baral B, Akhgari A, Metsä-Ketelä M (2018) Activation of microbial secondary metabolic pathways: avenues and challenges. Synth Syst Biotechnol 3:163–178. https://doi.org/10.1016/j.synbio.2018.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol Lett 309:1–7. https://doi.org/10.1111/j.1574-6968.2010.02000.x

    Article  CAS  PubMed  Google Scholar 

  19. Singh AK, Sisodia A, Sisodia V, Padhi M (2019) Role of microbes in restoration ecology and ecosystem services. In: Singh JS, Singh DP (eds) New and future developments in microbial biotechnology and bioengineering, 1st edn. Elsevier, Amsterdam, pp 57–68. https://doi.org/10.1016/B978-0-444-64191-5.00004-3

    Chapter  Google Scholar 

  20. Dubey A, Malla MA, Khan F, Chowdhary K, Yadav S, Kumar A, Sharma S, Khare PK, Khan ML (2019) Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv 28:2405–2429. https://doi.org/10.1007/s10531-019-01760-5

    Article  Google Scholar 

  21. Dolfing J, Vos A, Bloem J, Ehlert PAI, Naumova NB, Kuikman PJ (2004) Microbial diversity in archived soils. Science 306:813–813. https://doi.org/10.1126/science.306.5697.813a

    Article  CAS  PubMed  Google Scholar 

  22. Klammer S, Mondini C, Insam H (2005) Microbial community fingerprints of composts stored under different conditions. Ann Microbiol 55:299–305

    CAS  Google Scholar 

  23. Roesch LF, Casella G, Simell O, Krischer J, Wasserfall CH, Schatz D, Atkinson MA, Neu J, Triplett EW (2009) Influence of fecal sample storage on bacterial community diversity. Open Microbiol J 3:40–46. https://doi.org/10.2174/1874285800903010040

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tzeneva VA, Salles JF, Naumova N, de Vos WM, Kuikman PJ, Dolfing J, Smidt H (2009) Effect of soil sample preservation, compared to the effect of other environmental variables on bacterial and eukaryotic diversity. Res Microbiol 160:89–98. https://doi.org/10.1016/j.resmic.2008.12.001

    Article  CAS  PubMed  Google Scholar 

  25. Ott SJ, Musfeldt M, Timmis KN, Hampe J, Wenderoth DF, Schreiber S (2004) In vitro alterations of intestinal bacterial microbiota in fecal samples during storage. Diagn Microbiol Infect Dis 50:237–245. https://doi.org/10.1016/j.diagmicrobio.2004.08.012

    Article  CAS  PubMed  Google Scholar 

  26. Nechvatal JM, Ram JL, Basson MD, Namprachan P, Niec SR, Badsha KZ, Matherly LH, Majumdar AP, Kato I (2008) Fecal collection, ambient preservation, and DNA extraction for PCR amplification of bacterial and human markers from human feces. J Microbiol Methods 72:124–132. https://doi.org/10.1016/j.mimet.2007.11.007

    Article  CAS  PubMed  Google Scholar 

  27. Song SJ, Amir A, Metcalf L, Amato KR, Xu ZZ, Humphrey G, Knight R (2016) Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems. https://doi.org/10.1128/mSystems.00021-16

    Article  PubMed  PubMed Central  Google Scholar 

  28. Blekhman R, Tang K, Archie EA, Barreiro LB, Johnson ZP, Wilson ME, Tung J (2016) Common methods for fecal sample storage in field studies yield consistent signatures of individual identity in microbiome sequencing data. Sci Rep 6:31519. https://doi.org/10.1038/srep31519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Choo JM, Leong LE, Rogers GB (2015) Sample storage conditions significantly influence faecal microbiome profiles. Sci Rep 5:16350. https://doi.org/10.1038/srep16350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dominianni C, Wu J, Hayes RB, Ahn J (2014) Comparison of methods for fecal microbiome biospecimen collection. BMC Microbiol 14:103. https://doi.org/10.1186/1471-2180-14-103

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hill CJ, Brown JR, Lynch DB, Jeffery IB, Ryan CA, Ross RP, O’Toole PW (2016) Effect of room temperature transport vials on DNA quality and phylogenetic composition of faecal microbiota of elderly adults and infants. Microbiome 4:19. https://doi.org/10.1186/s40168-016-0164-3

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kerckhof FM, Courtens EN, Geirnaert A, Hoefman S, Ho A, Vilchez-Vargas R, Boon N (2014) Optimized cryopreservation of mixed microbial communities for conserved functionality and diversity. PLoS One 9:e99517. https://doi.org/10.1371/journal.pone.0099517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McKain N, Genc B, Snelling TJ, Wallace RJ (2013) Differential recovery of bacterial and archaeal 16S rRNA genes from ruminal digesta in response to glycerol as cryoprotectant. J Microbiol Methods 95:381–383. https://doi.org/10.1016/j.mimet.2013.10.009

    Article  CAS  PubMed  Google Scholar 

  34. Sinha R, Abnet CC, White O, Knight R, Huttenhower C (2017) The microbiome quality control project: baseline study design and future directions. Genome Biol 16:276. https://doi.org/10.1186/s13059-015-0841-8

    Article  Google Scholar 

  35. Vogtmann E, Chen J, Amir A, Shi J, Abnet CC, Nelson H, Sinha R (2016) Comparison of collection methods for fecal samples in microbiome Studies. Am J Epidemiol 185:115–123. https://doi.org/10.1093/aje/kww177

    Article  PubMed  Google Scholar 

  36. Wowk B (2012) Electric and magnetic fields in cryopreservation. Cryobiology 64:301–303. https://doi.org/10.1016/j.cryobiol.2012.02.003

    Article  PubMed  Google Scholar 

  37. Morono Y, Terada T, Yamamoto Y, Xiao N, Hirose T, Sugeno M, Ohwada N, Inagaki F (2015) Intact preservation of environmental samples by freezing under an alternating magnetic field. Environ Microbiol Rep 7:243–251. https://doi.org/10.1111/1758-2229.12238

    Article  CAS  PubMed  Google Scholar 

  38. Braun S, Morono Y, Becker KW, Hinrichs KU, Kjeldsen KU, Jørgensen BB, Lomstein BA (2016) Cellular content of biomolecules in sub-seafloor microbial communities. Geochim Cosmochim Acta 188:330–351. https://doi.org/10.1016/j.gca.2016.06.019

    Article  CAS  Google Scholar 

  39. Trembath-Reichert E, Morono Y, Ijiri A, Hoshino T, Dawson KS, Inagaki F, Orphan VJ (2017) Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds. Proc Natl Acad Sci USA 114:9206–9215. https://doi.org/10.1073/pnas.1707525114

    Article  CAS  Google Scholar 

  40. Gopal M, Gupta A (2016) Building plant microbiome vault: a future biotechnological resource. Symbiosis 77:1–8. https://doi.org/10.1007/s13199-018-0574-z

    Article  CAS  Google Scholar 

  41. Martin-Dejardin F, Ebel B, Lemetais G, Minh HN, Gervais P, Cachon R, Chambin O (2013) A way to follow the viability of encapsulated Bifidobacterium bifidum subjected to a freeze-drying process in order to target the colon: interest of flow cytometry. Eur J Pharm Sci 49:166–174. https://doi.org/10.1016/j.ejps.2013.02.015

    Article  CAS  PubMed  Google Scholar 

  42. Kerckhof FM, Courtens EN, Geirnaert A, Hoefman S, Ho A, Vilchez-Vargas R, Pieper DH, Jauregui R, Vlaeminck SE, Van de Wiele T, Vandamme P (2014) Optimized cryopreservation of mixed microbial communities for conserved functionality and diversity. PLoS One 9:e99517. https://doi.org/10.1371/journal.pone.0099517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. DeArmon IA, Orlando MD, Rosenwald AJ, Klein F, Fernelius AL, Lincoln RE, Middaugh PR (1962) Viability and estimation of shelf-life of bacterial populations. Appl Environ Microbiol 10:422–427

    Article  Google Scholar 

  44. Khudyakov AN, Polezhaeva TV, Zaitseva OO, Gűnter EA, Solomina ON, Popeyko OV, Shubakov AA, Vetoshkin KA (2015) The cryoprotectant effect of polysaccharides from plants and microalgae on human white blood cells. Biopreserv Biobank 13:240–246. https://doi.org/10.1089/bio.2014.0077

    Article  CAS  PubMed  Google Scholar 

  45. Martos GI, Minahk CJ, Font de Valdez G, Morero R (2007) Effects of protective agents on membrane fluidity of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus. Lett Appl Microbiol 45:282–288. https://doi.org/10.1111/j.1472-765X.2007.02188.x

    Article  CAS  PubMed  Google Scholar 

  46. Nyanga LK, Nout MJ, Smid EJ, Boekhout T, Zwietering MH (2012) Yeasts preservation: alternatives for lyophilisation. World J Microbiol Biotechnol 28:3239–3244. https://doi.org/10.1007/s11274-012-1118-y

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tymczyszyn EE, Sosa N, Gerbino E, Hugo A, Gómez-Zavaglia A, Schebor C (2012) Effect of physical properties on the stability of Lactobacillus bulgaricus in a freeze-dried galacto-oligosaccharides matrix. Int J Food Microbiol 155:217–221. https://doi.org/10.1016/j.ijfoodmicro.2012.02.008

    Article  CAS  PubMed  Google Scholar 

  48. Santos MI, Gerbino E, Araujo-Andrade C, Tymczyszyn EE, Gómez-ZavagliaA (2014) Stability of freeze-dried Lactobacillus delbrueckii subsp. bulgaricus in the presence of galacto- oligosaccharides and lactulose as determined by near infrared spectroscopy. Food Res Int 59:53–60. https://doi.org/10.1016/j.foodres.2014.01.054

    Article  CAS  Google Scholar 

  49. Obara YA, Yamai SH, Nikkawa TA, Shimoda YU, Miyamoto YA (1981) Preservation and transportation of bacteria by a simple gelatin disk method. J Clin Microbiol 14:61–66

    Article  CAS  Google Scholar 

  50. Kulkarni GA, Chitte RR (2015) Preservation of thermophilic bacterial spores using filter paper disc techniques. J Bioprocess Biotech 5:1–3. https://doi.org/10.4172/2155-9821.1000223

    Article  CAS  Google Scholar 

  51. López-Rubio A, Sanchez E, Wilkanowicz S, Sanz Y, Lagaron JM (2012) Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocolloids 28:159–167. https://doi.org/10.1016/j.foodhyd.2011.12.008

    Article  CAS  Google Scholar 

  52. Liu Y, Rafailovich MH, Malal R, Cohn D, Chidambaram D (2009) Engineering of bio-hybrid materials by electrospinning polymer-microbe fibres. Proc Natl Acad Sci USA 106:14201–14206. https://doi.org/10.1073/pnas.0903238106

    Article  PubMed  Google Scholar 

  53. Woodworth MH, Carpentieri C, Sitchenko KL, Kraft CS (2017) Challenges in fecal donor selection and screening for fecal microbiota transplantation: a review. Gut Microbes 8:225–237. https://doi.org/10.1080/19490976.2017.1286006

    Article  PubMed  PubMed Central  Google Scholar 

  54. Carroll IM, Ringel-Kulka T, Siddle JP, Klaenhammer TR, Ringel Y (2012) Characterization of the fecal microbiota using high-throughput sequencing reveals a stable microbial community during storage. PloS One 7:e46953. https://doi.org/10.1371/journal.pone.0046953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Crowley LC, Scott AP, Marfell BJ, Boughaba JA, Chojnowski G, Waterhouse NJ (2016) Measuring cell death by propidium iodide uptake and flow cytometry. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot087163

    Article  PubMed  Google Scholar 

  56. Rodríguez-Tobías H, Morales G, Ledezma A, Romero J, Saldívar R, Langlois V, Renard E, Grande D (2016) Electrospinning and electrospraying techniques for designing novel antibacterial poly (3-hydroxybutyrate)/zinc oxide nanofibrous composites. J Mater Sci 51:8593–8609

    Article  Google Scholar 

  57. Bhushani JA, Anandharamakrishnan C (2014) Electrospinning and electrospraying techniques: potential food based applications. Trends Food Sci Technol 38:21–33. https://doi.org/10.1016/j.tifs.2014.03.004

    Article  CAS  Google Scholar 

  58. Vandeputte D, Tito RY, Vanleeuwen R, Falony G, Raes J (2017) Practical considerations for large-scale gut microbiome studies. FEMS Microbiol Rev 41:154–167. https://doi.org/10.1093/femsre/fux027

    Article  Google Scholar 

  59. Aguirre M, Eck A, Koenen ME, Savelkoul PH, Budding AE, Venema K (2015) Evaluation of an optimal preparation of human standardized fecal inocula for in vitro fermentation studies. J Microbiol Methods 117:78–84. https://doi.org/10.1016/j.mimet.2015.07.019

    Article  PubMed  Google Scholar 

  60. Yu C, Reddy AP, Simmons CW, Simmons BA, Singer SW, VanderGheynst JS (2015) Preservation of microbial communities enriched on lignocellulose under thermophilic and high-solid conditions. Biotechnol Biofuels 8:206. https://doi.org/10.1186/s13068-015-0392-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Silkina A, Nelson GD, Bayliss CE, Pooley CL, Day JG (2017) Bioremediation efficacy-comparison of nutrient removal from an anaerobic digest waste-based medium by an algal consortium before and after cryopreservation. J Appl Phycol 29:1331–1341. https://doi.org/10.1007/s10811-017-1066-x

    Article  CAS  Google Scholar 

  62. Bircher L, Schwab C, Geirnaert A, Lacroix C (2018) Cryopreservation of artificial gut microbiota produced with in vitro fermentation technology. Microb Biotechnol 11:163–175

    Article  CAS  Google Scholar 

  63. Vekeman B, Heylen K (2015) Preservation of microbial pure cultures and mixed communities. Hydrocarb Lipid Microbiol Protoc. https://doi.org/10.1007/8623_2015_51

    Article  Google Scholar 

  64. Fuertez J, Córdoba G, McLennan JD, Adams DJ, Sparks TD (2018) Potential application of developed methanogenic microbial consortia for coal biogasification. Int J Coal Geol 188:165–180. https://doi.org/10.1016/j.coal.2018.02.013

    Article  CAS  Google Scholar 

  65. Gaci N, Chaudhary PP, Tottey W, Alric M, Brugère JF (2017) Functional amplification and preservation of human gut microbiota. Microb Ecol Health Dis 28:1–10. https://doi.org/10.1080/16512235.2017.1308070

    Article  CAS  Google Scholar 

  66. Lee KM, Adams M, Klassen JL (2019) Evaluation of DESS as a storage medium for microbial community analysis. Peer J 7:e6414. https://doi.org/10.7717/peerj.6414

    Article  CAS  PubMed  Google Scholar 

  67. Bircher L, Geirnaert A, Hammes F, Lacroix C, Schwab C (2018) Effect of cryopreservation and lyophilization on viability and growth of strict anaerobic human gut microbes. Microb Biotechnol 11:721–733. https://doi.org/10.1111/1751-7915.13265

    Article  CAS  Google Scholar 

  68. Yarberry A, Lansing S, Luckarift H, Diltz R, Mulbry W, Yarwood S (2019) Effect of anaerobic digester inoculum preservation via lyophilization on methane recovery. Waste Manag 87:62–70. https://doi.org/10.1016/j.wasman.2019.01.033

    Article  CAS  PubMed  Google Scholar 

  69. Tatangelo V, Franzetti A, Gandolfi I, Bestetti G, Ambrosini R (2014) Effect of preservation method on the assessment of bacterial community structure in soil and water samples. FEMS Microbiol Lett 356:32–38. https://doi.org/10.1111/1574-6968.12475

    Article  CAS  PubMed  Google Scholar 

  70. Shaw AG, Sim K, Powell E, Cornwell E, Cramer T, McClure ZE, Li MS, Kroll JS (2016) Latitude in sample handling and storage for infant faecal microbiota studies: the elephant in the room? Microbiome 4:1–14. https://doi.org/10.1186/s40168-016-0186-x

    Article  Google Scholar 

  71. Tap J, Cools-Portier S, Pavan S, Druesne A, Öhman L, Törnblom H, Simren M, Derrien M (2019) Effects of the long-term storage of human fecal microbiota samples collected in RNA later. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-018-36953-5

    Article  CAS  Google Scholar 

  72. Tedjo DI, Jonkers DM, Savelkoul PH, Masclee AA, van Best N, Pierik MJ, Penders J (2015) The effect of sampling and storage on the fecal microbiota composition in healthy and diseased subjects. PloS One 10:e0126685. https://doi.org/10.1371/journal.pone.0126685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported from the Grant No. BT/PR13969/BCE/8/1142/2015, Department of Biotechnology (DBT), Govt. of India. Dhananjay Desai acknowledges principal investigator (AICRP-ADMAS) and Director, ICAR-CCARI Ela, Old Goa, Goa 403402 for permitting him to work on the manuscript. We acknowledge the critical editing of manuscript by Manali Vaijanapurkar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Prakash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, O., Nimonkar, Y. & Desai, D. A Recent Overview of Microbes and Microbiome Preservation. Indian J Microbiol 60, 297–309 (2020). https://doi.org/10.1007/s12088-020-00880-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-020-00880-9

Keywords

Navigation