Skip to main content

Advertisement

Log in

Drag reduction on a three-dimensional model vehicle using a wire-to-plate DBD plasma actuator

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

In this paper, we apply a wire-to-plate DBD plasma actuator to a three-dimensional model vehicle (called Ahmed body) for drag reduction at the free-stream velocities of \(U_\infty = 10{-}20\ \hbox {m}/\hbox {s}\). An actuator with a thin wire of 11 µm diameter as an exposed electrode is located at the front edge of the slanted surface of the Ahmed body, and its spanwise length and applied voltage are varied. The induced mean velocity by the actuator reaches up to about 4.2 m/s at the applied voltage of 9 kV. With actuation, the drag is reduced by the amount of maximum 10% at \(U_{\infty } = 10\ \hbox {m}/\hbox {s}\). The maximum efficiency of the present actuator is 0.1–0.12 depending on the spanwise length of the actuator, applied voltage, and free-stream velocity. The present drag reduction and efficiency are higher than those of a conventional plate-to-plate DBD plasma actuator. With surface-pressure and PIV measurements, it is shown that the flow above the slanted surface is significantly affected by the spanwise length of the actuator, and the streamwise momentum induced by the actuator suppresses the flow separation at the front edge of the slanted surface and recovers the pressure on the slanted and vertical base surfaces, resulting in drag reduction.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahmed SR, Ramm G, Faltin G (1984) Some salient features of the time-averaged ground vehicle wake. SAE Technical Paper, p 840300

  • Ashpis DE, Laun MC, Griebeler EL (2012) Progress toward accurate measurements of power consumptions of DBD plasma actuators. AIAA Paper, p 823

  • Barlow JB, Rae WH, Pope A (1999) Low-speed wind tunnel testing. Wiley, New York

    Google Scholar 

  • Barros D, Borée J, Noack BR, Spohn A, Ruiz T (2016) Bluff body drag manipulation using pulsed jets and Coanda effect. J Fluid Mech 805:422–459

    Article  MathSciNet  Google Scholar 

  • Beaudoin JF, Aider JL (2008) Drag and lift reduction of 3D bluff-body using flaps. Exp Fluids 44:491–501

    Article  Google Scholar 

  • Benard N, Moreau E (2014) Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Exp Fluids 55:1846

    Article  Google Scholar 

  • Boucinha V, Weber R, Kourta A (2011) Drag reduction of a 3D bluff body using plasma actuators. Int J Aerodyn 1:262–281

    Article  Google Scholar 

  • Choi H, Lee J, Park H (2014) Aerodynamics of heavy vehicles. Annu Rev Fluid Mech 46:441–468

    Article  MathSciNet  Google Scholar 

  • Corke TC, Enloe CL, Wilkinson SP (2010) Dielectric barrier discharge plasma actuators for flow control. Annu Rev Fluid Mech 42:505–529

    Article  Google Scholar 

  • Debien A, Benard N, David L, Moreau E (2012a) Unsteady aspect of the electrohydrodynamic force produced by surface dielectric barrier discharge actuators. Appl Phys Lett 100:013901

    Article  Google Scholar 

  • Debien A, Benard N, Moreau E (2012b) Dielectric barrier discharge plasma actuators for flow control. J Phys D Appl Phys 45:215201

    Article  Google Scholar 

  • Delgado O, Lutsey N (2015) Advanced tractor-trailer efficiency technology potential in the 2020–2030 timeframe. White Paper, The International Council on Clean Transportation, Washington, DC

  • Fourrié G, Keirsbulck L, Labraga L, Gilliéron P (2011) Bluff-body drag reduction using a deflector. Exp Fluids 50:385–395

    Article  Google Scholar 

  • Gilliéron P, Kourta A (2010) Aerodynamic drag reduction by vertical splitter plates. Exp Fluids 48:1–16

    Article  Google Scholar 

  • Gilliéron P, Kourta A (2013) Aerodynamic drag control by pulsed jets on simplified car geometry. Exp Fluids 54:1457

    Article  Google Scholar 

  • Hoskinson AR, Hershkowitz N (2010) Differences between dielectric barrier discharge plasma actuators with cylindrical and rectangular exposed electrodes. J Phys D Appl Phys 43:065205

    Article  Google Scholar 

  • Joseph P, Amandolése X, Aider JL (2012) Drag reduction on the \(25^{\circ }\) slant angle Ahmed reference body using pulsed jets. Exp Fluids 52:1169–1185

    Article  Google Scholar 

  • Julian J, Harinaldi Budiarso, Difitro R, Stefan P (2016) The effect of plasma actuator placement on drag coefficient reduction of Ahmed body as an aerodynamic model. Int J Technol 7:306–313

    Article  Google Scholar 

  • Khalighi B, Ho J, Cooney J, Neiswander B, Corke TC, Han T (2016) Aerodynamic drag reduction investigation for a simplified road vehicle using plasma flow control. ASME Paper, p 7927

  • Kim D, Lee H, Yi W, Choi H (2016) A bio-inspired device for drag reduction on a three-dimensional model vehicle. Bioinspir Biomim 11:026004

    Article  Google Scholar 

  • Kotsonis M (2015) Diagnostics for characterisation of plasma actuators. Meas Sci Technol 26:092001

    Article  Google Scholar 

  • Kourta A, Leclerc C (2013) Characterization of synthetic jet actuation with application to Ahmed body wake. Sens Actuators A 192:13–26

    Article  Google Scholar 

  • Krajnović S (2014) Large eddy simulation exploration of passive flow control around an Ahmed body. J Fluids Eng 136:121103

    Article  Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pouryoussefi SG, Mirzaei M, Hajipour M (2015) Experimental study of separation bubble control behind a backward-facing step using plasma actuators. Acta Mech 226:1153–1165

    Article  Google Scholar 

  • Pujals G, Depardon S, Cossu C (2010) Drag reduction of a 3D bluff body using coherent streamwise streaks. Exp Fluids 49:1085–1094

    Article  Google Scholar 

  • Qi X, Yang L, Yan H, Jin Y, Hua Y, Ren C (2016) Experimental study on surface dielectric barrier discharge plasma actuator with different encapsulated electrode widths for airflow control at atmospheric pressure. Plasma Sci Technol 18:1005

    Article  Google Scholar 

  • Robert Bosch GmbH (2002) Bosch electronic automotive handbook. Bentley Publishers, Cambridge

    Google Scholar 

  • Roth JR, Sherman DM, Wilkinson SP (1998) Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma. AIAA Paper, p 328

  • Rouméas M, Gilliéron P, Kourta A (2009) Drag reduction by flow separation control on a car after body. Int J Numer Meth Fluids 60:1222–1240

    Article  Google Scholar 

  • Roy S, Zhao P, DasGupta A, Soni J (2016) Dielectric barrier discharge actuator for vehicle drag reduction at highway speeds. AIP Adv 6:025322

    Article  Google Scholar 

  • Shadmani S, Nainiyan SM, Mirzaei M, Ghasennasl R, Pouryoussefi SG (2018) Experimental investigation of flow control over an Ahmed body using DBD plasma actuator. J Appl Fluid Mech 11:1267–1276

    Article  Google Scholar 

  • Tounsi N, Mestiri R, Keirsbulck L, Oualli H, Hanchi S, Aloui F (2016) Experimental study of flow control on bluff body using piezoelectric actuators. J Appl Fluid Mech 9:827–838

    Article  Google Scholar 

  • Vernet JA, Örlü R, Söderblom D, Elofsson P, Alfredsson PH (2018) Plasma streamwise vortex generators for flow separation control on trucks. Flow Turbul Combust 100:1101–1109

    Article  Google Scholar 

  • Wang JJ, Choi KS, Feng LH, Jukes TN, Whalley RD (2013) Recent developments in DBD plasma flow control. Prog Aerosp Sci 62:52–78

    Article  Google Scholar 

  • Zhang BF, Liu K, Zhou Y, To S, Tu JY (2018) Active drag reduction of a high-drag Ahmed body based on steady blowing. J Fluid Mech 856:351–396

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation through the Ministry of Science and ICT (Nos. 2017R1A4A1015523 and 2019R1A2C2086237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haecheon Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Do, H. & Choi, H. Drag reduction on a three-dimensional model vehicle using a wire-to-plate DBD plasma actuator. Exp Fluids 61, 135 (2020). https://doi.org/10.1007/s00348-020-02961-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-020-02961-3

Navigation