Skip to main content

Advertisement

Log in

Tyrosine phosphorylation of tumor cell caveolin-1: impact on cancer progression

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Caveolin-1 (CAV1) has long been implicated in cancer progression, and while widely accepted as an oncogenic protein, CAV1 also has tumor suppressor activity. CAV1 was first identified in an early study as the primary substrate of Src kinase, a potent oncoprotein, where its phosphorylation correlated with cellular transformation. Indeed, CAV1 phosphorylation on tyrosine-14 (Y14; pCAV1) has been associated with several cancer-associated processes such as focal adhesion dynamics, tumor cell migration and invasion, growth suppression, cancer cell metabolism, and mechanical and oxidative stress. Despite this, a clear understanding of the role of Y14-phosphorylated pCAV1 in cancer progression has not been thoroughly established. Here, we provide an overview of the role of Src-dependent phosphorylation of tumor cell CAV1 in cancer progression, focusing on pCAV1 in tumor cell migration, focal adhesion signaling and metabolism, and in the cancer cell response to stress pathways characteristic of the tumor microenvironment. We also discuss a model for Y14 phosphorylation regulation of CAV1 effector protein interactions via the caveolin scaffolding domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brugge, J. S., & Erikson, R. L. (1977). Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature, 269(5626), 346–348. https://doi.org/10.1038/269346a0.

    Article  CAS  PubMed  Google Scholar 

  2. Collett, M. S., & Erikson, R. L. (1978). Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci U S A, 75(4), 2021–2024. https://doi.org/10.1073/pnas.75.4.2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Levinson, A. D., Oppermann, H., Levintow, L., Varmus, H. E., & Bishop, J. M. (1978). Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell, 15(2), 561–572. https://doi.org/10.1016/0092-8674(78)90024-7.

    Article  CAS  PubMed  Google Scholar 

  4. Sefton, B. M., Hunter, T., Beemon, K., & Eckhart, W. (1980). Evidence that the phosphorylation of tyrosine is essential for cellular transformation by Rous sarcoma virus. Cell, 20(3), 807–816. https://doi.org/10.1016/0092-8674(80)90327-x.

    Article  CAS  PubMed  Google Scholar 

  5. Lipsick, J. (2019). A history of cancer research: tyrosine kinases. Cold Spring Harbor perspectives in biology, 11(2). https://doi.org/10.1101/cshperspect.a035592.

  6. Glenney Jr., J. R., & Zokas, L. (1989). Novel tyrosine kinase substrates from Rous sarcoma virus-transformed cells are present in the membrane skeleton. J Cell Biol, 108(6), 2401–2408. https://doi.org/10.1083/jcb.108.6.2401.

    Article  CAS  PubMed  Google Scholar 

  7. Rothberg, K. G., Heuser, J. E., Donzell, W. C., Ying, Y.-S., Glenney, J. R., & Anderson, R. G. W. (1992). Caveolin, a protein component of caveolae membrane coats. Cell, 68, 673–682.

    Article  CAS  PubMed  Google Scholar 

  8. Li, S., Seitz, R., & Lisanti, M. P. (1996). Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem, 271(7), 3863–3868.

    Article  CAS  PubMed  Google Scholar 

  9. Ketteler, J., & Klein, D. (2018). Caveolin-1, cancer and therapy resistance. Int J Cancer, 143(9), 2092–2104. https://doi.org/10.1002/ijc.31369.

    Article  CAS  PubMed  Google Scholar 

  10. Espada, J., & Martín-Pérez, J. (2017). Chapter three—an update on Src family of nonreceptor tyrosine kinases biology. In L. Galluzzi (Ed.), Int Rev Cell Molec Biol (Vol. 331, pp. 83-122): Academic Press.

  11. Parton, R. G. (2018). Caveolae: structure, function, and relationship to disease. Ann Rev Cell Dev Biol, 34(1), 111–136. https://doi.org/10.1146/annurev-cellbio-100617-062737.

    Article  CAS  Google Scholar 

  12. Dupree, P., Parton, R. G., Raposo, G., Kurzchalia, T. V., & Simons, K. (1993). Caveolae and sorting in the trans-Golgi network of epithelial cells. The EMBO Journal, 12(4), 1597–1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dietzen, D. J., Hastings, W. R., & Lublin, D. M. (1995). Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J Biol Chem, 270(12), 6838–6842.

    Article  CAS  PubMed  Google Scholar 

  14. Tonn Eisinger, K. R., Woolfrey, K. M., Swanson, S. P., Schnell, S. A., Meitzen, J., Dell'Acqua, M., & Mermelstein, P. G. (2018). Palmitoylation of caveolin-1 is regulated by the same DHHC acyltransferases that modify steroid hormone receptors. J Biol Chem, 293(41), 15901–15911. https://doi.org/10.1074/jbc.RA118.004167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parat, M. O., & Fox, P. L. (2001). Palmitoylation of caveolin-1 in endothelial cells is post-translational but irreversible. J Biol Chem, 276(19), 15776–15782.

    Article  CAS  PubMed  Google Scholar 

  16. Parat, M. O., Stachowicz, R. Z., & Fox, P. L. (2002). Oxidative stress inhibits caveolin-1 palmitoylation and trafficking in endothelial cells. Biochem J, 361(Pt 3), 681–688. https://doi.org/10.1042/0264-6021:3610681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, S., Galbiati, F., Volonte, D., Sargiacomo, M., Engelman, J. A., Das, K., et al. (1998). Mutational analysis of caveolin-induced vesicle formation. Expression of caveolin-1 recruits caveolin-2 to caveolae membranes. FEBS Lett, 434(1-2), 127–134. https://doi.org/10.1016/s0014-5793(98)00945-4.

    Article  CAS  PubMed  Google Scholar 

  18. Parolini, I., Sargiacomo, M., Galbiati, F., Rizzo, G., Grignani, F., Engelman, J. A., Okamoto, T., Ikezu, T., Scherer, P. E., Mora, R., Rodriguez-Boulan, E., Peschle, C., & Lisanti, M. P. (1999). Expression of caveolin-1 is required for the transport of caveolin-2 to the plasma membrane. Retention of caveolin-2 at the level of the golgi complex. J Biol Chem, 274(36), 25718–25725. https://doi.org/10.1074/jbc.274.36.25718.

    Article  CAS  PubMed  Google Scholar 

  19. Lee, H., Park, D. S., Razani, B., Russell, R. G., Pestell, R. G., & Lisanti, M. P. (2002). Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (-/-) null mice show mammary epithelial cell hyperplasia. Am J Pathol, 161(4), 1357–1369. https://doi.org/10.1016/S0002-9440(10)64412-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scherer, P. E., Okamoto, T., Chun, M., Nishimoto, I., Lodish, H. F., & Lisanti, M. P. (1996). Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci U S A, 93(1), 131–135. https://doi.org/10.1073/pnas.93.1.131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang, Z., Scherer, P. E., Okamoto, T., Song, K., Chu, C., Kohtz, D. S., Nishimoto, I., Lodish, H. F., & Lisanti, M. P. (1996). Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem, 271(4), 2255–2261. https://doi.org/10.1074/jbc.271.4.2255.

    Article  CAS  PubMed  Google Scholar 

  22. Scherer, P. E., Tang, Z., Chun, M., Sargiacomo, M., Lodish, H. F., & Lisanti, M. P. (1995). Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. Identification and epitope mapping of an isoform-specific monoclonal antibody probe. J Biol Chem, 270(27), 16395–16401. https://doi.org/10.1074/jbc.270.27.16395.

    Article  CAS  PubMed  Google Scholar 

  23. Mastick, C., Sanguinetti, A. R., Knesek, J. H., Mastick, G. S., & Newcomb, L. F. (2001). Caveolin-1 and a 29-kDa caveolin-associated protein are phosphorylated on tyrosine in cells expressing a temperature-sensitive v-Abl kinase. Exp Cell Res, 266(1), 142–154. https://doi.org/10.1006/excr.2001.5205.

    Article  CAS  PubMed  Google Scholar 

  24. Mastick, C. C., & Saltiel, A. R. (1997). Insulin-stimulated tyrosine phosphorylation of caveolin is specific for the differentiated adipocyte phenotype in 3T3-L1 cells. J Biol Chem, 272(33), 20706–20714. https://doi.org/10.1074/jbc.272.33.20706.

    Article  CAS  PubMed  Google Scholar 

  25. Monier, S., Parton, R. G., Vogel, F., Behlke, J., Henske, A., & Kurzchalia, T. V. (1995). VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol Biol Cell, 6(7), 911–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sargiacomo, M., Scherer, P. E., Tang, Z., Kubler, E., Song, K. S., Sanders, M. C., & Lisanti, M. P. (1995). Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc Natl Acad Sci U S A, 92(20), 9407–9411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song, K. S., Tang, Z., Li, S., & Lisanti, M. P. (1997). Mutational analysis of the properties of caveolin-1. A novel role for the C-terminal domain in mediating homo-typic caveolin-caveolin interactions. J Biol Chem, 272(7), 4398–4403.

    Article  CAS  PubMed  Google Scholar 

  28. Monier, S., Dietzen, D. J., Hastings, W. R., Lublin, D. M., & Kurzchalia, T. V. (1996). Oligomerization of VIP21-caveolin in vitro is stabilized by long chain fatty acylation or cholesterol. FEBS Lett, 388(2-3), 143–149.

    Article  CAS  PubMed  Google Scholar 

  29. Epand, R. M., Sayer, B. G., & Epand, R. F. (2005). Caveolin scaffolding region and cholesterol-rich domains in membranes. J Mol Biol, 345(2), 339–350.

    Article  CAS  PubMed  Google Scholar 

  30. Li, S., Couet, J., & Lisanti, M. P. (1996). Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem, 271(46), 29182–29190.

    CAS  PubMed  Google Scholar 

  31. Couet, J., Li, S., Okamoto, T., Ikezu, T., & Lisanti, M. P. (1997). Identification of peptide and protein ligands for the caveolin- scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem, 272(10), 6525–6533.

    Article  CAS  PubMed  Google Scholar 

  32. Garcia-Cardena, G., Martasek, P., Masters, B. S., Skidd, P. M., Couet, J., Li, S., et al. (1997). Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem, 272(41), 25437–25440. https://doi.org/10.1074/jbc.272.41.25437.

    Article  CAS  PubMed  Google Scholar 

  33. Li, S., Okamoto, T., Chun, M., Sargiacomo, M., Casanova, J. E., Hansen, S. H., Nishimoto, I., & Lisanti, M. P. (1995). Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem, 270, 15693–15701.

    Article  CAS  PubMed  Google Scholar 

  34. Nystrom, F. H., Chen, H., Cong, L. N., Li, Y., & Quon, M. J. (1999). Caveolin-1 interacts with the insulin receptor and can differentially modulate insulin signaling in transfected Cos-7 cells and rat adipose cells. Mol Endocrinol, 13(12), 2013–2024.

    Article  CAS  PubMed  Google Scholar 

  35. Hoop, C. L., Sivanandam, V. N., Kodali, R., Srnec, M. N., & van der Wel, P. C. (2012). Structural characterization of the caveolin scaffolding domain in association with cholesterol-rich membranes. Biochemistry, 51(1), 90–99. https://doi.org/10.1021/bi201356v.

    Article  CAS  PubMed  Google Scholar 

  36. Kurzchalia, T. V., Dupree, P., Parton, R. G., Kellner, R., Virta, H., Lehnert, M., & Simons, K. (1992). VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. J Cell Biol, 118(5), 1003–1014. https://doi.org/10.1083/jcb.118.5.1003.

    Article  CAS  PubMed  Google Scholar 

  37. Hill, M. M., Bastiani, M., Luetterforst, R., Kirkham, M., Kirkham, A., Nixon, S. J., Walser, P., Abankwa, D., Oorschot, V. M. J., Martin, S., Hancock, J. F., & Parton, R. G. (2008). PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell, 132(1), 113–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Parton, R. G., McMahon, K.-A., & Wu, Y. (2020). Caveolae: formation, dynamics, and function. Current Opin Cell Biol, 65, 8–16. https://doi.org/10.1016/j.ceb.2020.02.001.

    Article  CAS  Google Scholar 

  39. Nabi, I. R. (2009). Cavin fever: regulating caveolae. Nat Cell Biol, 11(7), 789–791.

    Article  CAS  PubMed  Google Scholar 

  40. Oh, P., McIntosh, D. P., & Schnitzer, J. E. (1998). Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol, 141(1), 101–114. https://doi.org/10.1083/jcb.141.1.101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Henley, J. R., Krueger, E. W., Oswald, B. J., & McNiven, M. A. (1998). Dynamin-mediated internalization of caveolae. J Cell Biol, 141(1), 85–99. https://doi.org/10.1083/jcb.141.1.85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shajahan, A. N., Timblin, B. K., Sandoval, R., Tiruppathi, C., Malik, A. B., & Minshall, R. D. (2004). Role of Src-induced dynamin-2 phosphorylation in caveolae-mediated endocytosis in endothelial cells. J Biol Chem, 279(19), 20392–20400. https://doi.org/10.1074/jbc.M308710200.

    Article  CAS  PubMed  Google Scholar 

  43. Morén, B., Shah, C., Howes, M. T., Schieber, N. L., McMahon, H. T., Parton, R. G., Daumke, O., & Lundmark, R. (2012). EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. Mol Biol Cell, 23(7), 1316–1329. https://doi.org/10.1091/mbc.E11-09-0787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shah, C., Hegde, B. G., Morén, B., Behrmann, E., Mielke, T., Moenke, G., Spahn, C. M. T., Lundmark, R., Daumke, O., & Langen, R. (2014). Structural insights into membrane interaction and caveolar targeting of dynamin-like EHD2. Structure (London, England : 1993), 22(3), 409–420. https://doi.org/10.1016/j.str.2013.12.015.

    Article  CAS  Google Scholar 

  45. Stoeber, M., Stoeck, I. K., Hänni, C., Bleck, C. K. E., Balistreri, G., & Helenius, A. (2012). Oligomers of the ATPase EHD2 confine caveolae to the plasma membrane through association with actin. The EMBO Journal, 31(10), 2350–2364. https://doi.org/10.1038/emboj.2012.98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hansen, C. G., Howard, G., & Nichols, B. J. (2011). Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis. J Cell Sci, 124(16), 2777–2785. https://doi.org/10.1242/jcs.084319.

    Article  CAS  PubMed  Google Scholar 

  47. Senju, Y., Itoh, Y., Takano, K., Hamada, S., & Suetsugu, S. (2011). Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting. J Cell Sci, 124(12), 2032–2040. https://doi.org/10.1242/jcs.086264.

    Article  CAS  PubMed  Google Scholar 

  48. Senju, Y., Rosenbaum, E., Shah, C., Hamada-Nakahara, S., Itoh, Y., Yamamoto, K., Hanawa-Suetsugu, K., Daumke, O., & Suetsugu, S. (2015). Phosphorylation of PACSIN2 by protein kinase C triggers the removal of caveolae from the plasma membrane. J Cell Sci, 128(15), 2766–2780. https://doi.org/10.1242/jcs.167775.

    Article  CAS  PubMed  Google Scholar 

  49. Nomura, R., & Fujimoto, T. (1999). Tyrosine-phosphorylated caveolin-1: immunolocalization and molecular characterization. Mol Biol Cell, 10(4), 975–986. https://doi.org/10.1091/mbc.10.4.975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zimnicka, A. M., Husain, Y. S., Shajahan, A. N., Sverdlov, M., Chaga, O., Chen, Z., Toth, P. T., Klomp, J., Karginov, A. V., Tiruppathi, C., Malik, A. B., & Minshall, R. D. (2016). Src-dependent phosphorylation of caveolin-1 Tyr14 promotes swelling and release of caveolae. Mol Biol Cell, 27, 2090–2106. https://doi.org/10.1091/mbc.E15-11-0756.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Orlichenko, L., Huang, B., Krueger, E., & McNiven, M. A. (2006). Epithelial growth factor-induced phosphorylation of caveolin 1 at tyrosine 14 stimulates caveolae formation in epithelial cells. J Biol Chem, 281(8), 4570–4579. https://doi.org/10.1074/jbc.M512088200.

    Article  CAS  PubMed  Google Scholar 

  52. Joshi, B., Bastiani, M., Strugnell, S. S., Boscher, C., Parton, R. G., & Nabi, I. R. (2012). Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation. J Cell Biol, 199(3), 425–435. https://doi.org/10.1083/jcb.201207089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lajoie, P., Goetz, J. G., Dennis, J. W., & Nabi, I. R. (2009). Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J Cell Biol, 185(3), 381–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gabor, K. A., Kim, D., Kim, C. H., & Hess, S. T. (2015). Nanoscale imaging of caveolin-1 membrane domains in vivo. PLoS One, 10(2), e0117225. https://doi.org/10.1371/journal.pone.0117225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tachikawa, M., Morone, N., Senju, Y., Sugiura, T., Hanawa-Suetsugu, K., Mochizuki, A., & Suetsugu, S. (2017). Measurement of caveolin-1 densities in the cell membrane for quantification of caveolar deformation after exposure to hypotonic membrane tension. Scientific Reports, 7(1), 7794. https://doi.org/10.1038/s41598-017-08259-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Khater, I. M., Liu, Q., Chou, K. C., Hamarneh, G., & Nabi, I. R. (2019). Super-resolution modularity analysis shows polyhedral caveolin-1 oligomers combine to form scaffolds and caveolae. Scientific Reports, 9(1), 9888. https://doi.org/10.1038/s41598-019-46174-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Khater, I. M., Meng, F., Wong, T. H., Nabi, I. R., & Hamarneh, G. (2018). Super resolution network analysis defines the molecular architecture of caveolae and caveolin-1 scaffolds. Scientific Reports, 8(1), 9009. https://doi.org/10.1038/s41598-018-27216-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stoeber, M., Schellenberger, P., Siebert, C. A., Leyrat, C., Helenius, A., & Grunewald, K. (2016). Model for the architecture of caveolae based on a flexible, net-like assembly of Cavin1 and Caveolin discs. Proc Natl Acad Sci U S A, 113(50), E8069–E8078. https://doi.org/10.1073/pnas.1616838113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ludwig, A., Nichols, B. J., & Sandin, S. (2016). Architecture of the caveolar coat complex. J Cell Sci, 129(16), 3077–3083. https://doi.org/10.1242/jcs.191262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hayer, A., Stoeber, M., Bissig, C., & Helenius, A. (2010). Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic, 11(3), 361–382. https://doi.org/10.1111/j.1600-0854.2009.01023.x.

    Article  CAS  PubMed  Google Scholar 

  61. Khater, I., Aroca-Ouellette, S., Meng, F., Nabi, I., & Hamarneh, G. (2019). Caveolae and scaffold detection from single molecule localization microscopy data using deep learning. PLoS One, 14(8), e0211659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Khater, I. M., Meng, F., Nabi, I. R., & Hamarneh, G. (2019). Identification of caveolin-1 domain signatures via graphlet analysis of single molecule super-resolution data. Bioinformatics, 35(18), 3468–3475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Engelman, J. A., Wykoff, C. C., Yasuhara, S., Song, K. S., Okamoto, T., & Lisanti, M. P. (1997). Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. J Biol Chem, 272(26), 16374–16381.

    Article  CAS  PubMed  Google Scholar 

  64. Koleske, A. J., Baltimore, D., & Lisanti, M. P. (1995). Reduction of caveolin and caveolae in oncogenically transformed cells. Proc Natl Acad Sci U S A, 92, 1381–1385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bender, F. C., Reymond, M. A., Bron, C., & Quest, A. F. (2000). Caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. Cancer Research, 60(20), 5870–5878.

    CAS  PubMed  Google Scholar 

  66. Quest, A. F., Leyton, L., & Parraga, M. (2004). Caveolins, caveolae, and lipid rafts in cellular transport, signaling, and disease. Biochem Cell Biol, 82(1), 129–144. https://doi.org/10.1139/o03-071.

    Article  CAS  PubMed  Google Scholar 

  67. Joshi, B., Strugnell, S. S., Goetz, J. G., Kojic, L. D., Cox, M. E., Griffith, O. L., Chan, S. K., Jones, S. J., Leung, S. P., Masoudi, H., Leung, S., Wiseman, S. M., & Nabi, I. R. (2008). Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Res, 68(20), 8210–8220. https://doi.org/10.1158/0008-5472.CAN-08-0343.

    Article  CAS  PubMed  Google Scholar 

  68. Savage, K., Lambros, M. B., Robertson, D., Jones, R. L., Jones, C., Mackay, A., et al. (2007). Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: a morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin Cancer Res, 13(1), 90–101.

    Article  CAS  PubMed  Google Scholar 

  69. Xu, K., Usary, J., Kousis, P. C., Prat, A., Wang, D.-Y., Adams, J. R., Wang, W., Loch, A. J., Deng, T., Zhao, W., Cardiff, R. D., Yoon, K., Gaiano, N., Ling, V., Beyene, J., Zacksenhaus, E., Gridley, T., Leong, W. L., Guidos, C. J., Perou, C. M., & Egan, S. E. (2012). Lunatic fringe deficiency cooperates with the Met/caveolin gene amplicon to induce basal-like breast cancer. Cancer Cell, 21(5), 626–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Williams, T. M., & Lisanti, M. P. (2005). Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol, 288(3), C494–C506.

    Article  CAS  PubMed  Google Scholar 

  71. Goetz, J. G., Lajoie, P., Wiseman, S. M., & Nabi, I. R. (2008). Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer Metastasis Rev, 27(4), 715–735.

    Article  CAS  PubMed  Google Scholar 

  72. Nunez-Wehinger, S., Ortiz, R. J., Diaz, N., Diaz, J., Lobos-Gonzalez, L., & Quest, A. F. (2014). Caveolin-1 in cell migration and metastasis. Curr Mol Med, 14(2), 255–274.

    Article  CAS  PubMed  Google Scholar 

  73. Sotgia, F., Martinez-Outschoorn, U. E., Pavlides, S., Howell, A., Pestell, R. G., & Lisanti, M. P. (2011). Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Res, 13(4), 213. https://doi.org/10.1186/bcr2892.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Witkiewicz, A. K., Dasgupta, A., Sotgia, F., Mercier, I., Pestell, R. G., Sabel, M., Kleer, C. G., Brody, J. R., & Lisanti, M. P. (2009). An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol, 174(6), 2023–2034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moon, H., Lee, C. S., Inder, K. L., Sharma, S., Choi, E., Black, D. M., et al. (2014). PTRF/cavin-1 neutralizes non-caveolar caveolin-1 microdomains in prostate cancer. [Original Article]. Oncogene, 33(27), 3561–3570. https://doi.org/10.1038/onc.2013.315.

    Article  CAS  PubMed  Google Scholar 

  76. Aung, C. S., Hill, M. M., Bastiani, M., Parton, R. G., & Parat, M. O. (2011). PTRF-cavin-1 expression decreases the migration of PC3 prostate cancer cells: role of matrix metalloprotease 9. Eur J Cell Biol, 90(2-3), 136–142.

    Article  CAS  PubMed  Google Scholar 

  77. Meng, F., Joshi, B., & Nabi, I. R. (2015). Galectin-3 overrides PTRF/Cavin-1 reduction of PC3 prostate cancer cell migration. PLoS One, 10(5), e0126056. https://doi.org/10.1371/journal.pone.0126056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Meng, F., Saxena, S., Liu, Y., Joshi, B., Wong, T. H., Shankar, J., Foster, L. J., Bernatchez, P., & Nabi, I. R. (2017). The phospho-caveolin-1 scaffolding domain dampens force fluctuations in focal adhesions and promotes cancer cell migration. Mol Biol Cell, 28(16), 2190–2201. https://doi.org/10.1091/mbc.E17-05-0278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yamaguchi, T., Hayashi, M., Ida, L., Yamamoto, M., Lu, C., Kajino, T., Cheng, J., Nakatochi, M., Isomura, H., Yamazaki, M., Suzuki, M., Fujimoto, T., & Takahashi, T. (2019). ROR1-CAVIN3 interaction required for caveolae-dependent endocytosis and pro-survival signaling in lung adenocarcinoma. Oncogene, 38(26), 5142–5157. https://doi.org/10.1038/s41388-019-0785-7.

    Article  CAS  PubMed  Google Scholar 

  80. Yamaguchi, T., Lu, C., Ida, L., Yanagisawa, K., Usukura, J., Cheng, J., Hotta, N., Shimada, Y., Isomura, H., Suzuki, M., Fujimoto, T., & Takahashi, T. (2016). ROR1 sustains caveolae and survival signalling as a scaffold of cavin-1 and caveolin-1. Nat Commun, 7, 10060. https://doi.org/10.1038/ncomms10060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hill, M. M., Scherbakov, N., Schiefermeier, N., Baran, J., Hancock, J. F., Huber, L. A., Parton, R. G., & Parat, M. O. (2007). Reassessing the role of phosphocaveolin-1 in cell adhesion and migration. Traffic, 8(12), 1695–1705. https://doi.org/10.1111/j.1600-0854.2007.00653.x.

    Article  CAS  PubMed  Google Scholar 

  82. Goetz, J. G., Joshi, B., Lajoie, P., Strugnell, S. S., Scudamore, T., Kojic, L. D., & Nabi, I. R. (2008). Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine-phosphorylated caveolin-1. J Cell Biol, 180(6), 1261–1275. https://doi.org/10.1083/jcb.200709019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Grande-García, A., Echarri, A., de Rooij, J., Alderson, N. B., Waterman-Storer, C. M., Valdivielso, J. M., et al. (2007). Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J Cell Biol, 177(4), 683–694. https://doi.org/10.1083/jcb.200701006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shatz, M., Lustig, G., Reich, R., & Liscovitch, M. (2010). Caveolin-1 mutants P132L and Y14F are dominant negative regulators of invasion, migration and aggregation in H1299 lung cancer cells. Exp Cell Res, 316(10), 1748–1762. https://doi.org/10.1016/j.yexcr.2010.02.006.

    Article  CAS  PubMed  Google Scholar 

  85. Ortiz, R., Diaz, J., Diaz, N., Lobos-Gonzalez, L., Cardenas, A., Contreras, P., et al. (2016). Extracellular matrix-specific Caveolin-1 phosphorylation on tyrosine 14 is linked to augmented melanoma metastasis but not tumorigenesis. Oncotarget, 7(26), 40571–40593. https://doi.org/10.18632/oncotarget.9738.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Urra, H., Torres, V. A., Ortiz, R. J., Lobos, L., Diaz, M. I., Diaz, N., et al. (2012). Caveolin-1-enhanced motility and focal adhesion turnover require tyrosine-14 but not accumulation to the rear in metastatic cancer cells. PLoS One, 7(4), e33085. https://doi.org/10.1371/journal.pone.0033085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Joshi, B., Pawling, J., Shankar, J., Pacholczyk, K., Kim, Y., Tran, W., et al. (2019). Caveolin-1 Y14 phosphorylation suppresses tumor growth while promoting invasion. Oncotarget, 10(62), 6668–6677. https://doi.org/10.18632/oncotarget.27313.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Faggi, F., Mitola, S., Sorci, G., Riuzzi, F., Donato, R., Codenotti, S., Poliani, P. L., Cominelli, M., Vescovi, R., Rossi, S., Calza, S., Colombi, M., Penna, F., Costelli, P., Perini, I., Sampaolesi, M., Monti, E., & Fanzani, A. (2014). Phosphocaveolin-1 enforces tumor growth and chemoresistance in rhabdomyosarcoma. PLoS One, 9(1), e84618. https://doi.org/10.1371/journal.pone.0084618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Díaz-Valdivia, N. I., Díaz, J., Contreras, P., Campos, A., Rojas-Celis, V., Burgos-Ravanal, R. A., Lobos-González, L., Torres, V. A., Perez, V. I., Frei, B., Leyton, L., & Quest, A. F. G. (2020). The non-receptor tyrosine phosphatase type 14 blocks caveolin-1-enhanced cancer cell metastasis. Oncogene, Epub, 39, 3693–3709. https://doi.org/10.1038/s41388-020-1242-3.

    Article  CAS  Google Scholar 

  90. Lavie, Y., Fiucci, G., & Liscovitch, M. (2001). Upregulation of caveolin in multidrug resistant cancer cells: functional implications. Adv Drug Deliv Rev, 49(3), 317–323.

    Article  CAS  PubMed  Google Scholar 

  91. Shatz, M., & Liscovitch, M. (2004). Caveolin-1 and cancer multidrug resistance: coordinate regulation of pro-survival proteins? Leuk Res, 28(9), 907–908.

    Article  CAS  PubMed  Google Scholar 

  92. Hehlgans, S., & Cordes, N. (2011). Caveolin-1: an essential modulator of cancer cell radio-and chemoresistance. Am J Cancer Res, 1(4), 521–530.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Cordes, N., Frick, S., Brunner, T. B., Pilarsky, C., Grutzmann, R., Sipos, B., et al. (2007). Human pancreatic tumor cells are sensitized to ionizing radiation by knockdown of caveolin-1. Oncogene, 26(48), 6851–6862. https://doi.org/10.1038/sj.onc.1210498.

    Article  CAS  PubMed  Google Scholar 

  94. Shajahan, A. N., Wang, A., Decker, M., Minshall, R. D., Liu, M. C., & Clarke, R. (2007). Caveolin-1 tyrosine phosphorylation enhances paclitaxel-mediated cytotoxicity. J. Biol. Chem., 282(8), 5934–5943. https://doi.org/10.1074/jbc.M608857200.

    Article  CAS  PubMed  Google Scholar 

  95. Volonte, D., & Galbiati, F. (2020). Caveolin-1, a master regulator of cellular senescence Cancer Met Rev, In press.

  96. Bartholomew, J. N., Volonte, D., & Galbiati, F. (2009). Caveolin-1 regulates the antagonistic pleiotropic properties of cellular senescence through a novel Mdm2/p53-mediated pathway. Cancer Res, 69(7), 2878–2886. https://doi.org/10.1158/0008-5472.CAN-08-2857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Volonte, D., Zhang, K., Lisanti, M. P., & Galbiati, F. (2002). Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts. Mol Biol Cell, 13(7), 2502–2517. https://doi.org/10.1091/mbc.01-11-0529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Beardsley, A., Fang, K., Mertz, H., Castranova, V., Friend, S., & Liu, J. (2005). Loss of caveolin-1 polarity impedes endothelial cell polarization and directional movement. J Biol Chem, 280(5), 3541–3547. https://doi.org/10.1074/jbc.M409040200.

    Article  CAS  PubMed  Google Scholar 

  99. Parat, M. O., Anand-Apte, B., & Fox, P. L. (2003). Differential caveolin-1 polarization in endothelial cells during migration in two and three dimensions. Mol Biol Cell, 14(8), 3156–3168. https://doi.org/10.1091/mbc.e02-11-0761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Podar, K., Shringarpure, R., Tai, Y. T., Simoncini, M., Sattler, M., Ishitsuka, K., Richardson, P. G., Hideshima, T., Chauhan, D., & Anderson, K. C. (2004). Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Res, 64(20), 7500–7506. https://doi.org/10.1158/0008-5472.CAN-04-0124.

    Article  CAS  PubMed  Google Scholar 

  101. Sun, X. H., Flynn, D. C., Castranova, V., Millecchia, L. L., Beardsley, A. R., & Liu, J. (2007). Identification of a novel domain at the N terminus of caveolin-1 that controls rear polarization of the protein and caveolae formation. J Biol Chem, 282(10), 7232–7241.

    Article  CAS  PubMed  Google Scholar 

  102. Jia, Z., Barbier, L., Stuart, H., Amraei, M., Pelech, S., Dennis, J. W., Metalnikov, P., O'Donnell, P., & Nabi, I. R. (2005). Tumor cell pseudopodial protrusions. Localized signaling domains coordinating cytoskeleton remodeling, cell adhesion, glycolysis, RNA translocation, and protein translation. J Biol Chem, 280(34), 30564–30573.

    Article  CAS  PubMed  Google Scholar 

  103. Kojic, L. D., Joshi, B., Lajoie, P., Le, P. U., Leung, S., Cox, M. E., et al. (2007). Raft-dependent endocytosis of autocrine motility factor is phosphatidylinositol-3-kinase-dependent in breast carcinoma cells. J Biol Chem, 282(40), 29305–29313.

    Article  CAS  PubMed  Google Scholar 

  104. Raikar, L. S., Vallejo, J., Lloyd, P. G., & Hardin, C. D. (2006). Overexpression of caveolin-1 results in increased plasma membrane targeting of glycolytic enzymes: the structural basis for a membrane associated metabolic compartment. J Cell Biochem, 98(4), 861–871. https://doi.org/10.1002/jcb.20732.

    Article  CAS  PubMed  Google Scholar 

  105. Beckner, M. E., Stracke, M. L., Liotta, L. A., & Schiffmanm, E. (1990). Glycolysis as primary energy source in tumor cell chemotaxis. J Natl Canc Inst, 82, 1836–1840.

    Article  CAS  Google Scholar 

  106. Nguyen, T. N., Wang, H. J., Zalzal, S., Nanci, A., & Nabi, I. R. (2000). Purification and characterization of beta-actin-rich tumor cell pseudopodia: role of glycolysis. Exp. Cell Res., 258(1), 171–183.

    Article  CAS  PubMed  Google Scholar 

  107. Ha, T. K., Her, N. G., Lee, M. G., Ryu, B. K., Lee, J. H., Han, J., Jeong, S. I., Kang, M. J., Kim, N. H., Kim, H. J., & Chi, S. G. (2012). Caveolin-1 increases aerobic glycolysis in colorectal cancers by stimulating HMGA1-mediated GLUT3 transcription. Cancer Res, 72(16), 4097–4109. https://doi.org/10.1158/0008-5472.CAN-12-0448.

    Article  CAS  PubMed  Google Scholar 

  108. Fiala, G. J., & Minguet, S. (2018). Chapter three—caveolin-1: the unnoticed player in TCR and BCR signaling. In F. Alt (Ed.), Adv Immunol (Vol. 137, pp. 83-133): Academic Press.

  109. Boscher, C., & Nabi, I. R. (2012). Caveolin-1: role in cell signaling. Adv Exp Med Biol, 729, 29–50.

    Article  CAS  PubMed  Google Scholar 

  110. Lisanti, M. P., Scherer, P. E., Tang, Z., & Sargiacomo, M. (1994). Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol, 4, 231–235.

    Article  CAS  PubMed  Google Scholar 

  111. Couet, J., Sargiacomo, M., & Lisanti, M. P. (1997). Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem, 272(48), 30429–30438. https://doi.org/10.1074/jbc.272.48.30429.

    Article  CAS  PubMed  Google Scholar 

  112. Agelaki, S., Spiliotaki, M., Markomanolaki, H., Kallergi, G., Mavroudis, D., Georgoulias, V., & Stournaras, C. (2009). Caveolin-1 regulates EGFR signaling in MCF-7 breast cancer cells and enhances gefitinib-induced tumor cell inhibition. Cancer Biol Ther, 8(15), 1470–1477. https://doi.org/10.4161/cbt.8.15.8939.

    Article  CAS  PubMed  Google Scholar 

  113. Mineo, C., James, G. L., Smart, E. J., & Anderson, R. G. (1996). Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. J Biol Chem, 271(20), 11930–11935. https://doi.org/10.1074/jbc.271.20.11930.

    Article  CAS  PubMed  Google Scholar 

  114. Lajoie, P., Partridge, E. A., Guay, G., Goetz, J. G., Pawling, J., Lagana, A., Joshi, B., Dennis, J. W., & Nabi, I. R. (2007). Plasma membrane domain organization regulates EGFR signaling in tumor cells. J Cell Biol, 179(2), 341–356. https://doi.org/10.1083/jcb.200611106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nabi, I. R., Shankar, J., & Dennis, J. W. (2015). The galectin lattice at a glance. J Cell Sci, 128(13), 2213–2219. https://doi.org/10.1242/jcs.151159.

    Article  CAS  PubMed  Google Scholar 

  116. Nangia-Makker, P., Hogan, V., & Raz, A. (2018). Galectin-3 and cancer stemness. Glycobiology, 28(4), 172–181. https://doi.org/10.1093/glycob/cwy001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kim, Y. N., Wiepz, G. J., Guadarrama, A. G., & Bertics, P. J. (2000). Epidermal growth factor-stimulated tyrosine phosphorylation of caveolin-1. Enhanced caveolin-1 tyrosine phosphorylation following aberrant epidermal growth factor receptor status. J Biol Chem, 275(11), 7481–7491. https://doi.org/10.1074/jbc.275.11.7481.

    Article  CAS  PubMed  Google Scholar 

  118. Boscher, C., & Nabi, I. R. (2013). Galectin-3- and phospho-caveolin-1-dependent outside-in integrin signaling mediates the EGF motogenic response in mammary cancer cells. Mol Biol Cell, 24(13), 2134–2145. https://doi.org/10.1091/mbc.E13-02-0095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hoffmann, C., Berking, A., Agerer, F., Buntru, A., Neske, F., Chhatwal, G. S., Ohlsen, K., & Hauck, C. R. (2010). Caveolin limits membrane microdomain mobility and integrin-mediated uptake of fibronectin-binding pathogens. J Cell Sci, 123(Pt 24), 4280–4291. https://doi.org/10.1242/jcs.064006.

    Article  CAS  PubMed  Google Scholar 

  120. del Pozo, M. A., Balasubramanian, N., Alderson, N. B., Kiosses, W. B., Grande-Garcia, A., Anderson, R. G., et al. (2005). Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nature cell biology, 7(9), 901–908.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Lakshminarayan, R., Wunder, C., Becken, U., Howes, M. T., Benzing, C., Arumugam, S., Sales, S., Ariotti, N., Chambon, V., Lamaze, C., Loew, D., Shevchenko, A., Gaus, K., Parton, R. G., & Johannes, L. (2014). Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nature cell biology, 16(6), 595–606.

    Article  CAS  PubMed  Google Scholar 

  122. Chaudhary, N., Gomez, G. A., Howes, M. T., Lo, H. P., McMahon, K. A., Rae, J. A., Schieber, N. L., Hill, M. M., Gaus, K., Yap, A. S., & Parton, R. G. (2014). Endocytic crosstalk: cavins, caveolins, and caveolae regulate clathrin-independent endocytosis. PLoS Biol, 12(4), e1001832. https://doi.org/10.1371/journal.pbio.1001832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Le, P. U., Guay, G., Altschuler, Y., & Nabi, I. R. (2002). Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. J Biol Chem, 277(5), 3371–3379.

    Article  CAS  PubMed  Google Scholar 

  124. Nabi, I. R., & Le, P. U. (2003). Caveolae/raft-dependent endocytosis. J Cell Biol, 161(4), 673–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Devreotes, P., & Horwitz, A. R. (2015). Signaling networks that regulate cell migration. Cold Spring Harbor perspectives in biology, 7(8), a005959–a005959. https://doi.org/10.1101/cshperspect.a005959.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Cao, H., Courchesne, W. E., & Mastick, C. C. (2002). A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: recruitment of C-terminal Src kinase. J Biol Chem, 277(11), 8771–8774. https://doi.org/10.1074/jbc.C100661200.

    Article  CAS  PubMed  Google Scholar 

  127. Gottlieb-Abraham, E., Shvartsman, D. E., Donaldson, J. C., Ehrlich, M., Gutman, O., Martin, G. S., & Henis, Y. I. (2013). Src-mediated caveolin-1 phosphorylation affects the targeting of active Src to specific membrane sites. Mol Biol Cell, 24(24), 3881–3895. https://doi.org/10.1091/mbc.E13-03-0163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chodniewicz, D., & Klemke, R. L. (2004). Regulation of integrin-mediated cellular responses through assembly of a CAS/Crk scaffold. Biochim Biophys Acta, 1692(2-3), 63–76. https://doi.org/10.1016/j.bbamcr.2004.03.006.

    Article  CAS  PubMed  Google Scholar 

  129. Nethe, M., Anthony, E. C., Fernandez-Borja, M., Dee, R., Geerts, D., Hensbergen, P. J., Deelder, A. M., Schmidt, G., & Hordijk, P. L. (2010). Focal-adhesion targeting links caveolin-1 to a Rac1-degradation pathway. J Cell Sci, 123(Pt 11), 1948–1958. https://doi.org/10.1242/jcs.062919.

    Article  CAS  PubMed  Google Scholar 

  130. Gaus, K., Le Lay, S., Balasubramanian, N., & Schwartz, M. A. (2006). Integrin-mediated adhesion regulates membrane order. J Cell Biol, 174(5), 725–734. https://doi.org/10.1083/jcb.200603034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mitchison, T., & Kirschner, M. (1988). Cytoskeletal dynamics and nerve growth. Neuron, 1(9), 761–772.

    Article  CAS  PubMed  Google Scholar 

  132. Case, L. B., & Waterman, C. M. (2015). Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. [Review]. Nature cell biology, 17(8), 955–963. https://doi.org/10.1038/ncb3191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Murphy, D. A., & Courtneidge, S. A. (2011). The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function. Nature reviews. Molecular cell biology, 12(7), 413–426. https://doi.org/10.1038/nrm3141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hoshino, D., Jourquin, J., Emmons, S. W., Miller, T., Goldgof, M., Costello, K., et al. (2012). Network analysis of the focal adhesion to invadopodia transition identifies a PI3K-PKCα invasive signaling axis. Science Signaling, 5(241), ra66. https://doi.org/10.1126/scisignal.2002964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yamaguchi, H., Takeo, Y., Yoshida, S., Kouchi, Z., Nakamura, Y., & Fukami, K. (2009). Lipid rafts and caveolin-1 are required for invadopodia formation and extracellular matrix degradation by human breast cancer cells. Cancer Research, 69(22), 8594–8602. https://doi.org/10.1158/0008-5472.CAN-09-2305.

    Article  CAS  PubMed  Google Scholar 

  136. Yang, H., Guan, L., Li, S., Jiang, Y., Xiong, N., Li, L., et al. (2016). Mechanosensitive caveolin-1 activation-induced PI3K/Akt/mTOR signaling pathway promotes breast cancer motility, invadopodia formation and metastasis in vivo. Oncotarget, 7(13), 16227–16247. https://doi.org/10.18632/oncotarget.7583.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Brisson, L., Driffort, V., Benoist, L., Poet, M., Counillon, L., Antelmi, E., et al. (2013). NaV1.5 Na + channels allosterically regulate the NHE-1 exchanger and promote the activity of breast cancer cell invadopodia. J Cell Sci, 126(21), 4835. https://doi.org/10.1242/jcs.123901.

    Article  CAS  PubMed  Google Scholar 

  138. Albrechtsen, R., Stautz, D., Sanjay, A., Kveiborg, M., & Wewer, U. M. (2011). Extracellular engagement of ADAM12 induces clusters of invadopodia with localized ectodomain shedding activity. Exp Cell Res, 317(2), 195–209. https://doi.org/10.1016/j.yexcr.2010.10.003.

    Article  CAS  PubMed  Google Scholar 

  139. Caldieri, G., Giacchetti, G., Beznoussenko, G., Attanasio, F., Ayala, I., & Buccione, R. (2009). Invadopodia biogenesis is regulated by caveolin-mediated modulation of membrane cholesterol levels. J Cell Molec Medicine, 13(8B), 1728–1740. https://doi.org/10.1111/j.1582-4934.2008.00568.x.

    Article  Google Scholar 

  140. Fiedler, E. C., & Hemann, M. T. (2019). Aiding and abetting: how the tumor microenvironment protects cancer from chemotherapy. Ann Rev Cancer Biol, 3(1), 409–428. https://doi.org/10.1146/annurev-cancerbio-030518-055524.

    Article  Google Scholar 

  141. Papalazarou, V., Salmeron-Sanchez, M., & Machesky, L. M. (2018). Tissue engineering the cancer microenvironment-challenges and opportunities. Biophys Rev, 10(6), 1695–1711. https://doi.org/10.1007/s12551-018-0466-8.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Volonte, D., Galbiati, F., Pestell, R. G., & Lisanti, M. P. (2001). Cellular stress induces the tyrosine phosphorylation of caveolin-1 (Tyr(14)) via activation of p38 mitogen-activated protein kinase and c-Src kinase. Evidence for caveolae, the actin cytoskeleton, and focal adhesions as mechanical sensors of osmotic stress. J Biol Chem, 276(11), 8094–8103. https://doi.org/10.1074/jbc.M009245200.

    Article  CAS  PubMed  Google Scholar 

  143. Radel, C., Carlile-Klusacek, M., & Rizzo, V. (2007). Participation of caveolae in beta1 integrin-mediated mechanotransduction. Biochem Biophys Res Commun, 358(2), 626–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Radel, C., & Rizzo, V. (2005). Integrin mechanotransduction stimulates caveolin-1 phosphorylation and recruitment of Csk to mediate actin reorganization. Am J Physiol Heart Circ Physiol, 288(2), H936–H945.

    Article  CAS  PubMed  Google Scholar 

  145. Xiong, N., Li, S., Tang, K., Bai, H., Peng, Y., Yang, H., Wu, C., & Liu, Y. (2017). Involvement of caveolin-1 in low shear stress-induced breast cancer cell motility and adhesion: roles of FAK/Src and ROCK/p-MLC pathways. Biochim Biophys Acta, 1864(1), 12–22. https://doi.org/10.1016/j.bbamcr.2016.10.013.

    Article  CAS  Google Scholar 

  146. Moreno-Vicente, R., Pavon, D. M., Martin-Padura, I., Catala-Montoro, M., Diez-Sanchez, A., Quilez-Alvarez, A., et al. (2018). Caveolin-1 modulates mechanotransduction responses to substrate stiffness through actin-dependent control of YAP. Cell Rep, 25(6), 1622–1635 e1626. https://doi.org/10.1016/j.celrep.2018.10.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yeh, Y. C., Ling, J. Y., Chen, W. C., Lin, H. H., & Tang, M. J. (2017). Mechanotransduction of matrix stiffness in regulation of focal adhesion size and number: reciprocal regulation of caveolin-1 and beta1 integrin. Scientific reports, 7(1), 15008. https://doi.org/10.1038/s41598-017-14932-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Peng, F., Wu, D., Ingram, A. J., Zhang, B., Gao, B., & Krepinsky, J. C. (2007). RhoA activation in mesangial cells by mechanical strain depends on caveolae and caveolin-1 interaction. J Am Soc Nephrol, 18(1), 189–198. https://doi.org/10.1681/ASN.2006050498.

    Article  CAS  PubMed  Google Scholar 

  149. Zhang, B., Peng, F., Wu, D., Ingram, A. J., Gao, B., & Krepinsky, J. C. (2007). Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells. Cell Signal, 19(8), 1690–1700.

    Article  CAS  PubMed  Google Scholar 

  150. Cheng, J. P., Mendoza-Topaz, C., Howard, G., Chadwick, J., Shvets, E., Cowburn, A. S., et al. (2015). Caveolae protect endothelial cells from membrane rupture during increased cardiac output. J Cell Biol, 211(1), 53–61. https://doi.org/10.1083/jcb.201504042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gervasio, O. L., Phillips, W. D., Cole, L., & Allen, D. G. (2011). Caveolae respond to cell stretch and contribute to stretch-induced signaling. J Cell Sci, 124(Pt 21), 3581–3590. https://doi.org/10.1242/jcs.084376.

    Article  CAS  PubMed  Google Scholar 

  152. Lim, Y. W., Lo, H. P., Ferguson, C., Martel, N., Giacomotto, J., Gomez, G. A., Yap, A. S., Hall, T. E., & Parton, R. G. (2017). Caveolae protect notochord cells against catastrophic mechanical failure during development. Curr Biol, 27(13), 1968–1981 e1967. https://doi.org/10.1016/j.cub.2017.05.067.

    Article  CAS  PubMed  Google Scholar 

  153. Lo, H. P., Nixon, S. J., Hall, T. E., Cowling, B. S., Ferguson, C., Morgan, G. P., Schieber, N. L., Fernandez-Rojo, M. A., Bastiani, M., Floetenmeyer, M., Martel, N., Laporte, J., Pilch, P. F., & Parton, R. G. (2015). The caveolin-cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle. J Cell Biol, 210(5), 833–849. https://doi.org/10.1083/jcb.201501046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sinha, B., Koster, D., Ruez, R., Gonnord, P., Bastiani, M., Abankwa, D., et al. (2010). Cells respond to mechanical stress by rapid disassembly of caveolae. Cell, 144(3), 402–413.

    Article  CAS  Google Scholar 

  155. Garcia, J., Bagwell, J., Njaine, B., Norman, J., Levic, D. S., Wopat, S., Miller, S. E., Liu, X., Locasale, J. W., Stainier, D. Y. R., & Bagnat, M. (2017). Sheath cell invasion and trans-differentiation repair mechanical damage caused by loss of caveolae in the zebrafish notochord. Curr Biol, 27(13), 1982–1989 e1983. https://doi.org/10.1016/j.cub.2017.05.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Parton, R. G., & del Pozo, M. A. (2013). Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol, 14(2), 98–112.

    Article  CAS  PubMed  Google Scholar 

  157. Rausch, V., Bostrom, J. R., Park, J., Bravo, I. R., Feng, Y., Hay, D. C., Link, B. A., & Hansen, C. G. (2019). The hippo pathway regulates caveolae expression and mediates flow response via caveolae. Curr Biol, 29(2), 242–255 e246. https://doi.org/10.1016/j.cub.2018.11.066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Torrino, S., Shen, W. W., Blouin, C. M., Mani, S. K., Viaris de Lesegno, C., Bost, P., Grassart, A., Köster, D., Valades-Cruz, C. A., Chambon, V., Johannes, L., Pierobon, P., Soumelis, V., Coirault, C., Vassilopoulos, S., & Lamaze, C. (2018). EHD2 is a mechanotransducer connecting caveolae dynamics with gene transcription. J Cell Biol, 217, 4029–4015. https://doi.org/10.1083/jcb.201801122.

    Article  CAS  Google Scholar 

  159. Sanguinetti, A. R., & Mastick, C. C. (2003). c-Abl is required for oxidative stress-induced phosphorylation of caveolin-1 on tyrosine 14. Cell Signal, 15(3), 289–298. https://doi.org/10.1016/s0898-6568(02)00090-6.

    Article  CAS  PubMed  Google Scholar 

  160. Aoki, T., Nomura, R., & Fujimoto, T. (1999). Tyrosine phosphorylation of caveolin-1 in the endothelium. Exp Cell Res, 253(2), 629–636. https://doi.org/10.1006/excr.1999.4652.

    Article  CAS  PubMed  Google Scholar 

  161. Percy, C. J., Pat, B. K., Healy, H., Johnson, D. W., & Gobe, G. C. (2008). Phosphorylation of caveolin-1 is anti-apoptotic and promotes cell attachment during oxidative stress of kidney cells. Pathology, 40(7), 694–701. https://doi.org/10.1080/00313020802436402.

    Article  CAS  PubMed  Google Scholar 

  162. Khan, E. M., Heidinger, J. M., Levy, M., Lisanti, M. P., Ravid, T., & Goldkorn, T. (2006). Epidermal growth factor receptor exposed to oxidative stress undergoes Src- and caveolin-1-dependent perinuclear trafficking. J. Biol. Chem., 281(20), 14486–14493. https://doi.org/10.1074/jbc.M509332200.

    Article  CAS  PubMed  Google Scholar 

  163. Sun, Y., Hu, G., Zhang, X., & Minshall, R. D. (2009). Phosphorylation of caveolin-1 regulates oxidant-induced pulmonary vascular permeability via paracellular and transcellular pathways. Circ Res, 105(7), 676-685, 615 p following 685, doi:https://doi.org/10.1161/CIRCRESAHA.109.201673.

  164. Dasari, A., Bartholomew, J. N., Volonte, D., & Galbiati, F. (2006). Oxidative stress induces premature senescence by stimulating caveolin-1 gene transcription through p38 mitogen-activated protein kinase/Sp1-mediated activation of two GC-rich promoter elements. Cancer Res, 66(22), 10805–10814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bourseau-Guilmain, E., Menard, J. A., Lindqvist, E., Indira Chandran, V., Christianson, H. C., Cerezo Magana, M., et al. (2016). Hypoxia regulates global membrane protein endocytosis through caveolin-1 in cancer cells. Nat Commun, 7, 11371. https://doi.org/10.1038/ncomms11371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Castillo Bennett, J., Silva, P., Martinez, S., Torres, V. A., & Quest, A. F. G. (2018). Hypoxia-Induced caveolin-1 expression promotes migration and invasion of tumor cells. Curr Mol Med, 18(4), 199–206. https://doi.org/10.2174/1566524018666180926163218.

    Article  CAS  PubMed  Google Scholar 

  167. Chandran, V. I., Mansson, A. S., Barbachowska, M., Cerezo-Magana, M., Nodin, B., Joshi, B., et al. (2020). Hypoxia attenuates trastuzumab uptake and trastuzumab-emtansine (T-DM1) cytotoxicity through redistribution of phosphorylated caveolin-1. Mol Cancer Res, Epub, doi:https://doi.org/10.1158/1541-7786.MCR-19-0856, 18, 644, 656.

  168. Boothe, T., Lim, G. E., Cen, H., Skovso, S., Piske, M., Li, S. N., et al. (2016). Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells. Mol Metab, 5(5), 366–378. https://doi.org/10.1016/j.molmet.2016.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Collins, B. M., Davis, M. J., Hancock, J. F., & Parton, R. G. (2012). Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions? Dev Cell, 23(1), 11–20. https://doi.org/10.1016/j.devcel.2012.06.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sessa, W. C. (2004). eNOS at a glance. J Cell Sci, 117(Pt 12), 2427–2429. https://doi.org/10.1242/jcs.01165.

    Article  CAS  PubMed  Google Scholar 

  171. Ju, H., Zou, R., Venema, V. J., & Venema, R. C. (1997). Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. J Biol Chem, 272(30), 18522–18525. https://doi.org/10.1074/jbc.272.30.18522.

    Article  CAS  PubMed  Google Scholar 

  172. Trane, A. E., Pavlov, D., Sharma, A., Saqib, U., Lau, K., van Petegem, F., Minshall, R. D., Roman, L. J., & Bernatchez, P. N. (2014). Deciphering the binding of caveolin-1 to client protein endothelial nitric-oxide synthase (eNOS): scaffolding subdomain identification, interaction modeling, and biological significance. J Biol Chem, 289(19), 13273–13283. https://doi.org/10.1074/jbc.M113.528695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Michel, J. B., Feron, O., Sacks, D., & Michel, T. (1997). Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin. J Biol Chem, 272(25), 15583–15586. https://doi.org/10.1074/jbc.272.25.15583.

    Article  CAS  PubMed  Google Scholar 

  174. Chen, Z., Bakhshi, F. R., Shajahan, A. N., Sharma, T., Mao, M., Trane, A., Bernatchez, P., van Nieuw Amerongen, G. P., Bonini, M. G., Skidgel, R. A., Malik, A. B., & Minshall, R. D. (2012). Nitric oxide-dependent Src activation and resultant caveolin-1 phosphorylation promote eNOS/caveolin-1 binding and eNOS inhibition. Mol Biol Cell, 23(7), 1388–1398. https://doi.org/10.1091/mbc.E11-09-0811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fukumura, D., Kashiwagi, S., & Jain, R. K. (2006). The role of nitric oxide in tumour progression. Nature Reviews Cancer, 6(7), 521–534. https://doi.org/10.1038/nrc1910.

    Article  CAS  PubMed  Google Scholar 

  176. Gratton, J. P., Lin, M. I., Yu, J., Weiss, E. D., Jiang, Z. L., Fairchild, T. A., Iwakiri, Y., Groszmann, R., Claffey, K. P., Cheng, Y. C., & Sessa, W. C. (2003). Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell, 4(1), 31–39.

    Article  CAS  PubMed  Google Scholar 

  177. Nah, J., Yoo, S. M., Jung, S., Jeong, E. I., Park, M., Kaang, B. K., & Jung, Y. K. (2017). Phosphorylated CAV1 activates autophagy through an interaction with BECN1 under oxidative stress. Cell Death Dis, 8(5), e2822. https://doi.org/10.1038/cddis.2017.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Root, K. T., Julien, J. A., & Glover, K. J. (2019). Secondary structure of caveolins: a mini review. Biochem Soc Trans, 47(5), 1489–1498. https://doi.org/10.1042/bst20190375.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Work on CAV1 in the Nabi lab is supported by grants from the Canadian Institutes for Health Research (CIHR PJT-156424, PJT-159845). Timothy Wong is supported by British Columbia Graduate Scholarship #6768 and UBC Faculty of Medicine Graduate Award #6442, Fiona Dickson by UBC Faculty of Medicine Graduate Award #6442 and NSERC Canada Graduate Scholarship Master’s Award #6563, and Logan Timmins by British Columbia Graduate Scholarship #6768.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan R. Nabi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, T.H., Dickson, F.H., Timmins, L.R. et al. Tyrosine phosphorylation of tumor cell caveolin-1: impact on cancer progression. Cancer Metastasis Rev 39, 455–469 (2020). https://doi.org/10.1007/s10555-020-09892-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09892-9

Keywords

Navigation