Skip to main content
Log in

Biodegradation of Butachlor by Bacillus altitudinis and Identification of Metabolites

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Butachlor is a chloroacetamide pre-emergence herbicide, with a half-life of 1.6 to 29 days. It is a suspected carcinogen, genotoxin, neurotoxin and persists in the environment having toxic effect on living systems. Butachlor degrading bacterial strain A16 was isolated from coal tar contaminated soil, which showed 99.38% similarity with Bacillus altitudinis 41KF2bT as revealed by 16S rRNA analysis. B. altitudinis strain A16 utilised butachlor as a sole source of carbon and degraded 90% of 50 mg L−1 butachlor in 5 days at a rate constant and half-life (t1/2) of 0.02 h−1 and 34.65 h, respectively, following the first-order reaction kinetics. Five metabolites (N-(butoxymethyl)-N-(2-chloroethyl)-2,6-diethylaniline, (N-(butoxymethyl)-2-chloro-N-(2-ethylphenyl) acetamide, N-(butoxymethyl)-2,6-diethyl-N-propylaniline, 2-chloro-N-(2,6-diethylphenyl) acetamide and 2,6-diethylaniline) were produced during the breakdown of butachlor by B. altitudinis A16 as identified by GC–MS analysis, which are further mineralized to carbon dioxide and water. A metabolic pathway is proposed and compared with other bacteria. The findings have immense beneficial application since such microbes can be used on large scale for faster soil bioremediation and minimizing negative impact of pesticide butachlor on health and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang S, Li H, Lin C (2013) Physiological, biochemical and growth responses of Italian ryegrass to butachlor exposure. Pestic Biochem Phys 106(1–2):21–27. https://doi.org/10.1016/j.pestbp.2013.03.007

    Article  CAS  Google Scholar 

  2. Abigail MEA, Samuel SM, Ramalingam C (2015) Addressing the environmental impacts of butachlor and the available remediation strategies: a systematic review. Int J Environ Sci Technol 12(12):4025–4036. https://doi.org/10.1007/s13762-015-0866-2

    Article  Google Scholar 

  3. Gao Y, Jin L, Shi H, Chu Z (2015) Characterization of a novel butachlor biodegradation pathway and cloning of the debutoxylase (Dbo) gene responsible for debutoxylation of butachlor in Bacillus sp. hys-1. J Agric Food Chem 63(38):8381–8390. https://doi.org/10.1021/acs.jafc.5b03326

    Article  PubMed  CAS  Google Scholar 

  4. Singh J, Nandabalan YK (2018) Prospecting Ammoniphilus sp. JF isolated from agricultural fields for butachlor degradation. 3 Biotech 8(3):164. https://doi.org/10.1007/s13205-018-1165-7

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alla MN, Badawi AM, Hassan NM, El-Bastawisy ZM, Badran EG (2008) Effect of metribuzin, butachlor and chlorimuron-ethyl on amino acid and protein formation in wheat and maize seedlings. Pestic Biochem Phys 90(1):8–18. https://doi.org/10.1016/j.pestbp.2007.07.003

    Article  CAS  Google Scholar 

  6. Verma JP, Jaiswal DK, Sagar R (2014) Pesticide relevance and their microbial degradation: a-state-of-art. Rev Environ Sci Biotechnol 13(4):429–466. https://doi.org/10.1007/s11157-014-9341-7

    Article  Google Scholar 

  7. National Center for Biotechnology Information (2019) PubChem Database. Butachlor, CID=31677, https://pubchem.ncbi.nlm.nih.gov/compound/Butachlor. Accessed 22 Oct 2019

  8. Dwivedi S, Singh BR, Al-Khedhairy AA, Alarifi S, Musarrat J (2010) Isolation and characterization of butachlor-catabolizing bacterial strain Stenotrophomonas acidaminiphila JS-1 from soil and assessment of its biodegradation potential. Lett Appl Microbiol 51(1):54–60. https://doi.org/10.1111/j.1472-765X.2010.02854.x

    Article  PubMed  CAS  Google Scholar 

  9. Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J (2012) Butachlor induced dissipation of mitochondrial membrane potential, oxidative DNA damage and necrosis in human peripheral blood mononuclear cells. Toxicology 302(1):77–87. https://doi.org/10.1016/j.tox.2012.07.014

    Article  PubMed  CAS  Google Scholar 

  10. Chang J, Liu S, Zhou S, Wang M, Zhu G (2013) Effects of butachlor on reproduction and hormone levels in adult zebrafish (Danio rerio). Exp Toxicol Pathol 65(1–2):205–209. https://doi.org/10.1016/j.etp.2011.08.007

    Article  PubMed  CAS  Google Scholar 

  11. Liu WY, Wang CY, Wang TS, Fellers GM, Lai BC, Kam YC (2011) Impacts of the herbicide butachlor on the larvae of a paddy field breeding frog (Fejervarya limnocharis) in subtropical Taiwan. Ecotoxicology 20(2):377–384. https://doi.org/10.1007/s10646-010-0589-6

    Article  PubMed  CAS  Google Scholar 

  12. Muthukaruppan G, Janardhanan S, Vijayalakshmi G (2005) Sublethal toxicity of the herbicide butachlor on the earthworm Perionyx sansibaricus and its histological changes (5 pp). J Soils Sediments 5(2):82–86. https://doi.org/10.1065/jss2004.09.111

    Article  CAS  Google Scholar 

  13. Kaur R, Goyal D (2019) Toxicity and degradation of the insecticide monocrotophos. Environ Chem Lett 17(3):1299–1324. https://doi.org/10.1007/s10311-019-00884-y

    Article  CAS  Google Scholar 

  14. Chen Q, Zhang J, Wang CH et al (2014) Novosphingobium chloroacetimidivorans sp. nov., a chloroacetamide herbicide–degrading bacterium isolated from activated sludge. Int J Syst Evol Microbiol 64(8):2573–2578. https://doi.org/10.1099/ijs.0.062950-0

    Article  PubMed  CAS  Google Scholar 

  15. Mohanty SS, Jena HM (2019) Evaluation of butachlor biodegradation efficacy of Serratia ureilytica strain AS1: a statistical optimization approach. Int J Environ Sci Technol 16(10):5807–5816. https://doi.org/10.1007/s13762-018-1958-6

    Article  CAS  Google Scholar 

  16. Mohanty SS, Jena HM (2018) Process optimization of butachlor bioremediation by Enterobacter cloacae using Plackett Burman design and response surface methodology. Process Saf Environ 119:198–206. https://doi.org/10.1016/j.psep.2018.08.009

    Article  CAS  Google Scholar 

  17. Khanna P, Goyal D, Khanna S (2012) Characterization of pyrene utilizing Bacillus spp. from crude oil contaminated soil. Braz J Microbiol 43(2):606–617. https://doi.org/10.1590/S1517-83822012000200024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Haq AU, Saeed M, Usman M, Muneer M, Adeel S, Abbas S, Iqbal A (2019) Removal of butachlor from aqueous solution using cantaloupe seed shell powder: kinetic, equilibrium and thermodynamic studies. Int J Environ Sci Technol 16(10):6029–6042. https://doi.org/10.1007/s13762-018-1992-4

    Article  CAS  Google Scholar 

  19. Xu C, Ding J, Qiu J, Ma Y (2013) Biodegradation of acetochlor by a newly isolated Achromobacter sp. strain D-12. J Environ Sci Health B 48(11):960–966. https://doi.org/10.1080/03601234.2013.816601

    Article  PubMed  CAS  Google Scholar 

  20. Kim OS, Cho YJ, Lee K et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62(3):716–721. https://doi.org/10.1099/ijs.0.038075-0

    Article  PubMed  CAS  Google Scholar 

  21. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Liu HM, Cao L, Lu P et al (2012) Biodegradation of butachlor by Rhodococcus sp. strain B1 and purification of its hydrolase (ChlH) responsible for N-dealkylation of chloroacetamide herbicides. J Agric Food Chem 60(50):2238–12244. https://doi.org/10.1021/jf303936j

    Article  CAS  Google Scholar 

  23. Kim NH, Kim DU, Kim I, Ka JO (2013) Syntrophic biodegradation of butachlor by Mycobacterium sp. J7A and Sphingobium sp. J7B isolated from rice paddy soil. FEMS Microbiol Lett 344(2):114–120. https://doi.org/10.1111/1574-6968.12163

    Article  PubMed  CAS  Google Scholar 

  24. Agnihotri S, Sillu D, Sharma G, Arya RK (2018) Photocatalytic and antibacterial potential of silver nanoparticles derived from pineapple waste: process optimization and modeling kinetics for dye removal. Appl Nanosci 8(8):2077–2092. https://doi.org/10.1007/s13204-018-0883-9

    Article  CAS  Google Scholar 

  25. Shivaji S, Chaturvedi P, Suresh K (2006) Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. Int J Syst Evol Microbiol 56(7):1465–1473. https://doi.org/10.1099/ijs.0.64029-0

    Article  PubMed  CAS  Google Scholar 

  26. Zhang J, Zheng JW, Liang B et al (2011) Biodegradation of chloroacetamide herbicides by Paracoccus sp. FLY-8 in vitro. J Agric Food Chem 59(9):4614–4621. https://doi.org/10.1021/jf104695g

    Article  PubMed  CAS  Google Scholar 

  27. Zheng J, Li R, Zhu J, Zhang J, He J, Li S, Jiang J (2012) Degradation of the chloroacetamide herbicide butachlor by Catellibacterium caeni sp. nov. DCA-1T. Int Biodeter Biodegr 73:16–22. https://doi.org/10.1016/j.ibiod.2012.06.003

    Article  CAS  Google Scholar 

  28. García-Alcántara JA, Maqueda-Gálvez AP, Téllez-Jurado A, Hernández-Martínez R, Lizardi-Jiménez MA (2016) Maya crude-oil degradation by a Bacillus licheniformis consortium isolated from a Mexican thermal source using a bubble column bioreactor. Water Air Soil Pollut 227(11):413. https://doi.org/10.1007/s11270-016-3121-7

    Article  CAS  Google Scholar 

  29. Surhio MA, Talpur FN, Nizamani SM et al (2017) Effective bioremediation of endocrine-disrupting phthalate esters, mediated by Bacillus strains. Water Air Soil Pollut 228(10):386. https://doi.org/10.1007/s11270-017-3567-2

    Article  CAS  Google Scholar 

  30. Suyamud B, Inthorn D, Panyapinyopol B, Thiravetyan P (2018) Biodegradation of bisphenol A by a newly isolated Bacillus megaterium strain ISO-2 from a polycarbonate industrial wastewater. Water Air Soil Pollut 229(11):348. https://doi.org/10.1007/s11270-018-3983-y

    Article  CAS  Google Scholar 

  31. Yu YL, Chen YX, Luo YM, Pan XD, He YF, Wong MH (2003) Rapid degradation of butachlor in wheat rhizosphere soil. Chemosphere 50(6):771–774. https://doi.org/10.1016/S0045-6535(02)00218-7

    Article  PubMed  CAS  Google Scholar 

  32. Yang C, Wang M, Li J (2012) Influence of rhizosphere microbial ecophysiological parameters from different plant species on butachlor degradation in a riparian soil. J Environ Qual 41(3):716–723. https://doi.org/10.2134/jeq2011.0223

    Article  PubMed  CAS  Google Scholar 

  33. Chen K, Chen Q, Wang GX et al (2015) Sphingomonas chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from activated sludge. Antonie Van Leeuwenhoek 108(3):703–710. https://doi.org/10.1007/s10482-015-0526-z

    Article  PubMed  CAS  Google Scholar 

  34. Chu CW, Chen Q, Wang CH et al (2016) Roseomonas chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from activated sludge. Antonie Van Leeuwenhoek 109(5):611–618. https://doi.org/10.1007/s10482-016-0664-y

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Director, Thapar Institute of Engineering & Technology (Deemed to be University), Patiala, for infrastructural support and to DST-SERB (Science and Engineering Research Board, Department of Science and Technology, Government of India) for financial support vide Grant EMR/2016/002524.

Author information

Authors and Affiliations

Authors

Contributions

RK conducted the experiments. RK and DG contributed equally towards the manuscript editing and its submission.

Corresponding author

Correspondence to Dinesh Goyal.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Goyal, D. Biodegradation of Butachlor by Bacillus altitudinis and Identification of Metabolites. Curr Microbiol 77, 2602–2612 (2020). https://doi.org/10.1007/s00284-020-02031-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02031-1

Navigation