Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 16, 2020

Role of protein tyrosine phosphatase 1B (PTP1B) in the increased sensitivity of endothelial cells to a promigratory effect of erythropoietin in an inflammatory environment

  • María Eugenia Chamorro ORCID logo EMAIL logo , Romina Maltaneri , Agustina Schiappacasse , Alcira Nesse and Daniela Vittori
From the journal Biological Chemistry

Abstract

The proliferation and migration of endothelial cells are vascular events of inflammation, a process which can also potentiate the effects of promigratory factors. With the aim of investigating possible modifications in the activity of erythropoietin (Epo) in an inflammatory environment, we found that Epo at a non-promigratory concentration was capable of stimulating EA.hy926 endothelial cell migration when TNF-α was present. VCAM-1 and ICAM-1 expression, as well as adhesion of monocytic THP-1 cells to endothelial layers were also increased. Structurally modified Epo (carbamylation or N-homocysteinylation) did not exhibit these effects. The sensitizing effect of TNF-α on Epo activity was mediated by the Epo receptor. Inhibition assays targeting the PI3K/mTOR/NF-κB pathway, shared by Epo and TNF-α, show a cross-talk between both cytokines. As observed in assays using antioxidants, cell migration elicited by TNF-α + Epo depended on TNF-α-generated reactive oxygen species (ROS). ROS-mediated inactivation of protein tyrosine phosphatase 1B (PTP1B), involved in Epo signaling termination, could explain the synergistic effect of these cytokines. Our results suggest that ROS generated by inflammation inactivate PTP1B, causing the Epo signal to last longer. This mechanism, along with the cross-talk between both cytokines, could explain the sensitizing action of TNF-α on the migratory effect of Epo.


Corresponding author: María Eugenia Chamorro, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Ciudad Autónoma deBuenos Aires, C1428EHA, Argentina, E-mail:
María Eugenia Chamorro and Romina Maltaneri: These authors contributed equally to this work.

Acknowledgments

This work was supported by grants from the Universidad de Buenos Aires (UBACYT), the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT). The authors are grateful to Zelltek S.A. (Argentina) for supplying human recombinant erythropoietin. Dr. Alcira Nesse, Dr. Daniela Vittori and Dr. María Eugenia Chamorro are research scientists at the CONICET, and Dr. Romina Maltaneri and Lic. Agustina Schiappacasse have received fellowships from the CONICET (Argentina).

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by the Universidad de Buenos Aires (UBACYT), the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT).

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Conflict of interest statement: The authors declare that they have no existing conflicts of interest regarding this article.

References

Anagnostou, A., Lee, E.S., Kessimian, N., Levinson, R., and Steiner, M. (1990). Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells. Proc. Natl. Acad. Sci. U. S. A. 87: 5978–5982, https://doi.org/10.1073/pnas.87.15.5978.Search in Google Scholar PubMed PubMed Central

Bogeski, I., Bozem, M., Sternfeld, L., Hofer, H.W., and Schulz, I. (2006). Inhibition of protein tyrosine phosphatase 1B by reactive oxygen species leads to maintenance of Ca2+ influx following store depletion in HEK 293 cells. Cell Calcium 40: 1–10, https://doi.org/10.1016/j.ceca.2006.03.003.Search in Google Scholar PubMed

Buerger, C., Shirsath, N., Lang, V., Berard, A., Diehl, S., Kaufmann, R., Boehncke, W.H., and Wolf, P. (2017). Inflammation dependent mTORC1 signaling interferes with the switch from keratinocyte proliferation to differentiation. PloS One 12: e0180853, https://doi.org/10.1371/journal.pone.0180853.Search in Google Scholar PubMed PubMed Central

Callero, M., Pérez, G.M., Vittori, D.C., Vota, D.M., Pregi, N., and Nesse, A.B. (2007). Modulation of protein tyrosine phosphatase 1B by erythropoietin in UT-7 cell line. Cell. Physiol. Biochem. 20: 319–328, https://doi.org/10.1159/000107518.Search in Google Scholar PubMed

Callero, M., Vota, D.M., Chamorro, M.E., Wenker, S.D., Vittori, D.C., and Nesse, A.B. (2011). Calcium as a mediator between erythropoietin and protein tyrosine phosphatase 1B. Arch. Biochem. Biophys. 505: 242–249, https://doi.org/10.1016/j.abb.2010.10.004.Search in Google Scholar PubMed

Chamorro, M.E., Wenker, S., Vota, D., Vittori, D., and Nesse, A. (2013). Signaling pathways of cell proliferation are involved in the differential effect of erythropoietin and its carbamylated derivative. Biochim. Biophys. Acta Mol. Cell Res. 1833: 1960–1968, https://doi.org/10.1016/j.bbamcr.2013.04.006.Search in Google Scholar PubMed

Chamorro, M.E., Maltaneri, R., Vittori, D., and Nesse, A. (2015). Protein tyrosine phosphatase 1B (PTP1B) is involved in the defective erythropoietic function of carbamylated erythropoietin. Inter. J. Biochem. Cell. Biol. 61: 63–71, https://doi.org/10.1016/j.biocel.2015.01.019.Search in Google Scholar PubMed

Cohen, J., Oren-Young, L., Klingmuller, U., and Neumann, D. (2004). Protein tyrosine phosphatase 1B participates in the down-regulation of the erythropoietin receptor signaling. Biochem. J. 377: 517–524, https://doi.org/10.1042/bj20031420.Search in Google Scholar PubMed PubMed Central

Doleschel, D., Rix, A., Arns, S., Palmowski, K., Gremse, F., Merkle, R., Salopiata, F., Klingmüller, U., Jarsch, M., Kiessling, F., et al. (2015). Erythropoietin improves the accumulation and therapeutic effects of carboplatin by enhancing tumor vascularization and perfusion. Theranostics 5: 905–918, https://doi.org/10.7150/thno.11304.Search in Google Scholar PubMed PubMed Central

Du, G., Zhu, H., Yu, P., Wang, H., He, J., Ye, L., Fu, F., Zhang, J., and Tian, J. 2013. SMND-309 promotes angiogenesis in human umbilical vein endothelial cells through activating erythropoietin receptor/STAT3/VEGF pathways. Eur. J. Pharmacol. 700: 173–180. https://doi.org/10.1016/j.ejphar.2012.12.013.Search in Google Scholar PubMed

Edgell, C.J., Mc Donald, C.C., and Graham, J.B. (1983). Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc. Natl. Acad. Sci. U. S. A. 80: 3734–3737, https://doi.org/10.1073/pnas.80.12.3734.Search in Google Scholar PubMed PubMed Central

Frey, R.S., Ushio-Fukai, M., and Malik, A.B. 2009. NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology. Antioxid. Redox Signal. 11: 791–810. https://doi.org/10.1089/ars.2008.2220.Search in Google Scholar PubMed PubMed Central

Galheigo, M.R., Cruz, A.R., Cabral, Á.S., Faria, P.R., Cordeiro, R.S., Silva, M.J., Tomiosso, T.C., Gonçalves, B.F., Pinto-Fochi, M.E., Taboga, S.R., et al. (2016). Role of the TNF-α receptor type 1 on prostate carcinogenesis in knockout mice. Prostate 76: 917–926, https://doi.org/10.1002/pros.23181.Search in Google Scholar PubMed

Haddad, J.J., and Abdel-Karim, N.E. (2011). NF-κB cellular and molecular regulatory mechanisms and pathways: therapeutic pattern or pseudoregulation? Cell Immunol. 271: 5–14, https://doi.org/10.1016/j.cellimm.2011.06.021.Search in Google Scholar PubMed

Kim, H., Hwang, J., Woo, C.H., Kim, E., Kim, T., Cho, K., Kim, J.H., Seo, J.M., and Lee, S.S. (2008). TNF-α-induced up-regulation of intercellular adhesion molecule-1 is regulated by a Rac-ROS-dependent cascade in human airway epithelial cells. Exper. Mol. Med. 40: 167–175, https://doi.org/10.3858/emm.2008.40.2.167.Search in Google Scholar PubMed PubMed Central

Kraus, L.M., Jones, M.R., and Kraus, A.P.Jr. (1998). Essential carbamoyl-amino acids formed in vivo in patients with end-stage renal disease managed by continuous ambulatory peritoneal dialysis: isolation, identification, and quantitation. J. Lab. Clin. Med. 131: 425–431, https://doi.org/10.1016/S0022-2143(98)90143-3.Search in Google Scholar PubMed

Lee, K.B., Byun, H.J., Park, S.H., Park, C.Y., Lee, S.H., and Rho, S.B. (2012). CYR61 controls p53 and NFkB expression through PI3K/Akt/mTOR pathways in carboplatin induced ovarian cáncer cells. Cancer Lett. 315: 86–95, https://doi.org/10.1016/j.canlet.2011.10.016.Search in Google Scholar PubMed

Lee, S.R., Kwon, K.S., Kim, S.R., and Rhee, S.G. (1998). Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273: 15366–15372, https://doi.org/10.1074/jbc.273.25.15366.Search in Google Scholar PubMed

Leist, M., Ghezzi, P., Grasso, G., Bianchi, R., Villa, P., Fratelli, M., Savino, C., Bianchi, M., Nielsen, J., Gerwien, J., et al. (2004). Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305: 239–242, https://doi.org/10.1126/science.1098313.Search in Google Scholar PubMed

Lin, C.C., Pan, C.S., Wang, C.Y., Liu, S.W., Hsiao, L.D., and Yang, C.M. (2015). Tumor necrosis factor-alpha induces VCAM-1 mediated inflammation via c-Src-dependent transactivation of EGF receptors in human cardiac fibroblasts. J. Biomed. Sci. 15: 22–53, https://doi.org/10.1186/s12929-015-0165-8.Search in Google Scholar PubMed PubMed Central

Liu, J., Ma, K., Gao, M., Zhang, X., and Liu, B. (2011). The activation of mTOR pathway induced by inflammation accelerates the progression of atherosclerosis in hemodialysis patients. Int. J. Cardiol. 152: S5–S6, https://doi.org/10.1016/j.ijcard.2011.08.479.Search in Google Scholar

Mahadev, K., Zilbering, A., Zhu, L., and Goldstein, B.J. (2001). Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J. Biol. Chem. 276: 21938–21942, https://doi.org/10.1074/jbc.C100109200.Search in Google Scholar PubMed

Maltaneri, R., Chamorro, M.E., Schiappacasse, A., Nesse, A., and Vittori, D. (2017). Differential effect of erythropoietin and carbamylated erythropoietin on endothelial cell migration. Int. J. Biochem. Cell Biol. 85: 25–34, https://doi.org/10.1016/j.biocel.2017.01.013.Search in Google Scholar PubMed

Maltaneri, R., Schiappacasse, A., Chamorro, M.E., Nesse, A., and Vittori, D. (2018). Participation of membrane calcium channels in erythropoietin-induced endothelial cell migration. Eur. J. Cell Biol. 97: 411–421, https://doi.org/10.1016/j.ejcb.2018.06.002.Search in Google Scholar PubMed

Meng, T.C., Fukada, T., and Tonks, N.K. (2002). Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9: 387–399, https://doi.org/10.1016/S1097-2765(02)00445-8.Search in Google Scholar PubMed

Mußbach, F., Henklein, P., Westermann, M., Settmacher, U., Böhmer, F.D., and Kaufmann, R. (2015). Proteinase-activated receptor 1 and 4 promoted migration of Hep3B hepatocellular carcinoma cells depends on ROS formation and RTK transactivation. J. Cancer Res. Clin. Oncol. 141: 813–825, https://doi.org/10.1007/s00432-014-1863-4.Search in Google Scholar PubMed

Myers, M.P., Andersen, J.N., Cheng, A., Tremblay, M.L., Horvath, C.M., Parisien, J.P., Salmeen, A., Barford, D., and Tonks, N.K. 2001. TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J. Biol. Chem. 276: 47771–47774. https://doi.org/10.1074/jbc.C100583200.Search in Google Scholar PubMed

Okamoto, T., Ozawa, Y., Kamoshita, M., Osada, H., Toda, E., Kurihara, T., Nagai, N., Umezawa, K., and Tsubota, K. (2016). The neuroprotective effect of rapamycin as a modulator of the mTOR-NF-κB axis during retinal inflammation. PLoS One 11: e0146517, https://doi.org/10.1371/journal.pone.0146517.Search in Google Scholar PubMed PubMed Central

Pegoretti, V., Baron, W., Laman, J.D., and Eisel, U.L.M. (2018). Selective modulation of TNF-TNFRs signaling: insights for multiple sclerosis treatment. Front. Immunol. 9: 925, https://doi.org/10.3389/fimmu.2018.00925.Search in Google Scholar PubMed PubMed Central

Sainson, R.C., Johnston, D.A., Chu, H.C., Holderfield, M.T., Nakatsu, M.N., Crampton, S.P., Davis, J., Conn, E., and Hughes, C.C. (2008). TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood 111: 4997–5007.10.1182/blood-2007-08-108597Search in Google Scholar PubMed PubMed Central

Schiappacasse, A., Maltaneri, R., Chamorro, M.E., Nesse, A., Wetzler, D., and Vittori, D. (2018). Modification of erythropoietin structure by N-homocysteinylation affects its antiapoptotic and proliferative functions. FEBS J. 285: 3801–3814, https://doi.org/10.1111/febs.14632.Search in Google Scholar PubMed

Shirai, R., Sato, K., Yamashita, T., Yamaguchi, M., Okano, T., Watanabe-Kominato, K., Watanabe, R., Matsuyama, T.A., Ishibashi-Ueda, H., Koba, S., et al. (2018). Neopterin counters vascular inflammation and atherosclerosis. J. Amer. Heart Assoc. 7: e007359, https://doi.org/10.1161/JAHA.117.007359.Search in Google Scholar PubMed PubMed Central

Shu, Q., Amin, M.A., Ruth, J.H., Campbell, P.L., and Koch, A.E. (2012). Suppression of endothelial cell activity by inhibition of TNF-α. Arthritis Res. Ther. 14: R88, https://doi.org/10.1186/ar3812.Search in Google Scholar PubMed PubMed Central

Sikora, M., Marczak, Ł., Kubalska, J., Graban, A., and Jakubowski, H. (2014). Identification of N-homocysteinylation sites in plasma proteins. Amino Acids 46: 235–244, https://doi.org/10.1007/s00726-013-1617-7.Search in Google Scholar PubMed

Stangl, V., Günther, C., Jarrin, A., Bramlage, P., Moobed, M., Staudt, A., Baumann, G., Stangl, K., and Felix, S.B. (2001). Homocysteine inhibits TNF-α-induced endothelial adhesion molecule expression and monocyte adhesion via nuclear factor-κB dependent pathway. Biochem. Biophys. Res. Commun. 280: 1093–1100, https://doi.org/10.1006/bbrc.2000.4207.Search in Google Scholar PubMed

Taoufik, E., Petit, E., Divoux, D., Tseveleki, V., Mengozzi, M., Roberts, M.L., Valable, S., Ghezzi, P., Quackenbush, J., Brines, M., et al. (2008). TNF receptor I sensitizes neurons to erythropoietin- and VEGF-mediated neuroprotection after ischemic and excitotoxic injury. Proc. Natl. Acad. Sci. U. S. A. 105: 6185–6190, https://doi.org/10.1073/pnas.0801447105.Search in Google Scholar PubMed PubMed Central

Ushio-Fukai, M. (2006). Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc. Res. 71: 226–235, https://doi.org/10.1016/j.cardiores.2006.04.015.Search in Google Scholar PubMed

van Montfort, R.L., Congreve, M., Tisi, D., Carr, R., and Jhoti, H. 2003. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423: 773–777. https://doi.org/10.1038/nature01681.Search in Google Scholar PubMed

Walrafen, P., Verdier, F., Kadri, Z., Chrétien, S., Lacombe, C., and Mayeux, P. (2005). Both proteasomes and lysosomes degrade the activated erythropoietin receptor. Blood 105: 600–608.10.1182/blood-2004-03-1216Search in Google Scholar PubMed

Wang, L., Chopp, M., Teng, H., Bolz, M., Francisco, M.A., Aluigi, D.M., Wang, X.L., Zhang, R.L., Chrsitensen, S., Sager, T.N., et al. (2011). Tumor necrosis factor α primes cerebral endothelial cells for erythropoietin-induced angiogenesis. J. Cereb. Blood Flow Metab. 31: 640–647, https://doi.org/10.1038/jcbfm.2010.138.Search in Google Scholar PubMed PubMed Central

Weiss, G., Ganz, T., and Goodnough, L.T. (2019). Anemia of inflammation. Blood 133: 40–50.10.1182/blood-2018-06-856500Search in Google Scholar PubMed PubMed Central

Wu, Y., and Zhou, B.P. (2010). TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion. Br. J. Cancer 102: 639–644, https://doi.org/10.1038/sj.bjc.6605530.Search in Google Scholar PubMed PubMed Central

Yamagata, K., Xie, Y., Suzuki, S., and Tagami, M. (2015). Epigallocatechin-3-gallate inhibits VCAM-1 expression and apoptosis induction associated with LC3 expressions in TNFα-stimulated human endothelial cells. Phytomedicine 22: 431–437, https://doi.org/10.1016/j.phymed.2015.01.011.Search in Google Scholar PubMed

Yang, S., Wang, J., Brand, D., and Zheng, S. 2018. Role of TNF–TNF receptor 2 signal in regulatory T Cells and its therapeutic implications. Front. Immunol. 9: 784. https://doi.org/10.3389/fimmu.2018.00784.Search in Google Scholar PubMed PubMed Central

Zhao, T., Li, H., and Liu, Z. (2017). Tumor necrosis factor receptor 2 promotes growth of colorectal cancer via the PI3K/AKT signaling pathway. Oncol. Lett. 13: 342–346, https://doi.org/10.3892/ol.2016.5403.Search in Google Scholar PubMed PubMed Central

Zhu, M., Wang, L., Yang, J., Xie, K., Zhu, M., Liu, S., Xu, C., Wang, J., Gu, L., Ni, Z., et al. (2019). Erythropoietin ameliorates lung injury by accelerating pulmonary endothelium cell proliferation via Janus Kinase-signal transducer and activator of transcription 3 pathway after kidney ischemia and reperfusion injury. Transplant. Proc. 51: 972–978, https://doi.org/10.1016/j.transproceed.2019.01.059.Search in Google Scholar PubMed

Received: 2020-02-14
Accepted: 2020-05-04
Published Online: 2020-07-16
Published in Print: 2020-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2020-0136/html
Scroll to top button