Skip to main content

Advertisement

Log in

Glycine metabolomic changes induced by anticancer agents in A549 cells

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Glycine plays a key role in rapidly proliferating cancer cells such as A549 cells. Targeting glycine metabolism is considered as a potential means for cancer treatment. However, the drug-induced alterations in glycine metabolism have not yet been investigated. Herein, a total of 34 glycine metabolites were examined in A549 cells with or without anticancer drug treatment. This work showed all tested anticancer agents could alter glycine metabolism in A549 cells including inhibition of pyruvate metabolism and down-regulation of betaine aldehyde and 5′-phosphoribosylglycinamide. Principal component analysis and orthogonal partial least-squares discrimination analysis exhibited the difference between control and each drug-treated group. In general, cisplatin, camptothecin, and SAHA could induce the significant down-regulation of more metabolites, compared with afatinib, gefitinib, and targretin. Both glycine, serine and threonine metabolism, and purine metabolism were significantly disturbed by the treatment with afatinib, gefitinib, and targretin. However, the treatment using cisplatin, camptothecin, and SAHA was considered to be highly responsible for the perturbation of glycine, serine and threonine metabolism, and cysteine and methionine metabolism. Finally, multivariate analysis for control and all drug-treated groups revealed 11 altered metabolites with a significant difference. It implies anti-cancer agents with different mechanisms of action might induce different comprehensive changes of glycine metabolomics. The current study provides fundamental insights into the acquisition of the role of anti-cancer agents in glycine metabolism while suppressing cancer cell proliferation, and may aid the development of cancer treatment targeting glycine metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G (2014) Serine and glycine metabolism in cancer. Trends Biochem Sci 39(4):191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal A, Simon MC (2018) Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol 217(7):2291–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beardsley GP, Taylor EC, Moroson BA, Moran RG (1989) A new folate antimetabolite, 5,10-dideaza-5,6,7,8-tetrahydrofolate is a potent inhibitor of denovo purine synthesis. J Biol Chem 264(1):328–333

    CAS  PubMed  Google Scholar 

  • Bigaud E, Corrales FJ (2016) Methylthioadenosine (MTA) regulates liver cells proteome and methylproteome: implications in liver biology and disease. Mol Cell Proteomics 15(5):1498–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bylesjö M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J (2006) OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Chemometr 20:341–351

    Article  CAS  Google Scholar 

  • Caperelli CA, Giroux EL (1997) The human glycinamide ribonucleotide transformylase domain: purification, characterization, and kinetic mechanism. Arch Biochem Biophys 341(1):98–103

    Article  CAS  PubMed  Google Scholar 

  • Chenette EJ, Rosenthal CK, Le Bot N, Zaromytidou A (2012) Research highlights: glycine fuels cancer cells. Nat Cell Biol 14(7):658–658

    Article  CAS  Google Scholar 

  • Chen Y, Zhang R, Song Y, He J, Sun J, Bai J, An Z, Dong L, Zhan Q, Abliz Z (2009) RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: finding potential biomarkers for breast cancer. Analyst 134(10):2003–2011

    Article  CAS  PubMed  Google Scholar 

  • Chu YD, Lai HY, Pai LM, Huang YH, Lin YH, Liang KH, Yeh CT (2019) The methionine salvage pathway-involving ADI1 inhibits hepatoma growth by epigenetically altering genes expression via elevating S-adenosylmethionine. Cell Death Dis 10:240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corbet C (2017) Stem cell metabolism in cancer and healthy tissues: pyruvate in the limelight. Front Pharmacol 8:958

    Article  PubMed  CAS  Google Scholar 

  • Cufer T, Ovcaricek T, O'Brien MER (2013) Systemic therapy of advanced non-small cell lung cancer: major-developments of the last 5-years. Eur J Cancer 49(6):1216–1225

    Article  CAS  PubMed  Google Scholar 

  • Dominy JE, Vazquez F, Puigserver P (2012) Glycine decarboxylase cleaves a “malignant” metabolic path to promote tumor initiation. Cancer Cell 21(2):143–145

    Article  CAS  PubMed  Google Scholar 

  • Ducker GS, Ghergurovich JM, Mainolfi N, Suri V, Jeong SK, Hsin-Jung Li S, Friedman A, Manfredi MG, Gitai Z, Kim H, Rabinowitz JD (2017) Human SHMT inhibitors reveal defective glycine import as a targetable metabolic vulnerability of diffuse large B-cell lymphoma. Proc Natl Acad Sci USA 114(43):11404–11409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wikstro¨m C, Wold S (2001) Multivariate and megavariate data analysis part I: basic principles and applications. Umetrics Academy, Sweden

    Google Scholar 

  • Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wikstro¨m C, Wold S (2006) Multivariate and megavariate data analysis part II: advanced applications and method extensions. Umetrics, Sweden

    Google Scholar 

  • Estrela JM, Ortega A, Obrador E (2006) Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43(2):143–181

    Article  CAS  PubMed  Google Scholar 

  • Estrela JM, Ortega A, Mena S, Sirerol JA, Obrador E (2016) Glutathione in metastases: from mechanisms to clinical applications. Crit Rev Clin Lab Sci 53(4):253–267

    Article  CAS  PubMed  Google Scholar 

  • Feron O (2009) Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol 92(3):329–333

    Article  CAS  PubMed  Google Scholar 

  • Figueroa-Soto CG, Valenzuela-Soto EM (2018) Glycine betaine rather than acting only as an osmolyte also plays a role as regulator in cellular metabolism. Biochime 147:89–97

    Article  CAS  Google Scholar 

  • Gamcsik MP, Kasibhatla MS, Teeter SD, Colvin OM (2012) Glutathione levels in human tumors. Biomarkers 17(8):671–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glunde K, Bhujwalla ZM, Ronen SM (2011) Choline metabolism in malignant transformation. Nat Rev Cancer 11:835–848. https://doi.org/10.1038/nrc3162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golias T, Kery M, Radenkovic S, Papandreou I (2019) Microenvironmental control of glucose metabolism in tumors by regulation of pyruvate dehydrogenase. Int J Cancer 144(4):674–686

    Article  CAS  PubMed  Google Scholar 

  • Gray LR, Tompkins SC, Taylor EB (2014) Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci 71(14):2577–2604

    Article  CAS  PubMed  Google Scholar 

  • Guo D, Murdoch CE, Xu H, Shi H, Duan DD, Ahmed A, Gu Y (2017) Vascular endothelial growth factor signaling requires glycine to promote angiogenesis. Sci Rep 7:14749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heist RS, Engelman JA (2012) SnapShot: non-small cell lung cancer. Cancer Cell 21(448):e2

    Google Scholar 

  • Henrich FC, Singer K, Poller K, Bernhardt L, Strobl CD, Limm K, Ritter AP, Gottfried E, Volkl S, Jacobs B, Peter K, Mougiakakos D, Dettmer K, Oefner PJ, Bosserhoff AK, Kreutz MP, Aigner M, Mackensen A (2016) Suppressive effects of tumor cell-derived 5 '-deoxy-5 '-methylthioadenosine on human T cells. Oncoimmunology 5(8):e1184802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hosios AM, Hecht VC, Danai LV, Johnson MO, Rathmell JC, Steinhauser ML, Manalis SR, Vander Heiden MG (2016) Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev Cell 36(5):540–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hur H, Xuan Y, Kim YB, Lee G, Shim W, Yun J, Ham IH, Han SU (2013) Expression of pyruvate dehydrogenase kinase-1 in gastric cancer as a potential therapeutic target. Int J Oncol 42(1):44–54

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Nillson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, Kafri R, Kirschner MW, Clish CW, Mootha VK (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336:1040–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz-Brull R, Seger D, Rivenson-Segal D, Rushkin E, Degani H (2002) Metabolic markers of breast cancer: enhanced choline metabolism and reduced choline-ether-phospholipid synthesis. Cancer Res 62(7):1966–1970

    CAS  PubMed  Google Scholar 

  • Kim P, Jeong CS (2010) Anti-gastritis and anti-oxidant effects of chenopodium album linne fractions and betaine. Biomol Ther 18(4):433–441

    Article  CAS  Google Scholar 

  • Kim D, Fiske BP, Birsoy K, Freinkman E, Kami K, Possemato RL, Chudnovsky Y, Pacold ME, Chen WW, Cantor JR, Shelton LM, Gui DY, Kwon M, Ramkissoon SH, Ligon KL, Kang SW, Snuderl M, Vander Heiden MG, Sabatini DM (2015) SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520(7547):363–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee N, Kim D (2016) Cancer metabolism: fueling more than just growth. Nat Mol Cells 39(12):847–854

    Article  CAS  Google Scholar 

  • Lin J, Lee JHJ, Paramasivam K, Pathak E, Wang Z, Pramono ZAD, Lim B, Wee KB, Surana U (2017) Induced-decay of glycine decarboxylase transcripts as an anticancer therapeutic strategy for non-small-cell lung carcinoma. Mol Ther Nucleic Acids 9:263–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu LN, Fu TT, Xu XF, Fu C, Fang MJ, Liu Y, Xu PX, Zhao YF (2015) Tracing the nitrogen metabolites of glycine using 15N-glycine and mass spectrometry. Rapid Commun Mass Spectrometr 29(7):645–653

    Article  CAS  Google Scholar 

  • Li QL, Lambrechts MJ, Zhang QY, Liu S, Ge DX, Yin RT, Xi MR, You ZB (2013) Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis. Drug Des Dev Ther 7:635–643

    CAS  Google Scholar 

  • Li YF, Wang YB, Wu P (2019) 5'-Methylthioadenosine and cancer: old molecules, new understanding. J Cancer 10(4):927–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13(8):572–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv HH, Zhen CX, Liu JY, Yang PF, Hu LJ, Shang P (2019) Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy. Oxid Med Cell Longev 2019:3150145. https://doi.org/10.1155/2019/3150145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maddocks ODK, Athineos D, Cheung EC, Lee P, Zhang T, van den Broek NJF, Mackay GM, Labuschagne CF, Gay D, Kruiswijk F, Blagih J, Vincent DF, Campbell KJ, Ceteci F, Sansom OJ, Blyth K, Vousden KH (2017) Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 544(7650):372–376

    Article  CAS  PubMed  Google Scholar 

  • Mattaini KR, Sullivan MR, Vander Heiden MG (2016) The importance of serine metabolism in cancer. J Cell Biol 214(3):249–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran RG, Baldwin SW, Taylor EC, Shih C (1989) The 6S-Diasteromer and 6R-diasteromer of 5,10-dideaza-5,6,7,8-tetrahydrofolate are equiactive inhibitors of denovo purine synthesis. J Biol Chem 264(35):21047–21051

    CAS  PubMed  Google Scholar 

  • Olson KA, Schell JC, Rutter J (2016) Pyruvate and metabolic flexibility: illuminating a path toward selective cancer therapies. Trends Biochem Sci 41(3):219–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paone A, Marani M, Fiascarelli A, Rinaldo S, Giardina G, Contestabile R, Paiardini A, Cutruzzola F (2014) SHMT1 knockdown induces apoptosis in lung cancer cells by causing uracil misincorporation. Cell Death Dis 5:e1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pera B, Krumsiek J, Assouline SE, Marullo R, Patel J, Phillip JM, Roman L, Mann KK, Cerchietti L (2018) Metabolomic profiling reveals cellular reprogramming of B-cell lymphoma by a lysine deacetylase inhibitor through the choline pathway. EBioMedicine 28:80–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Razak MA, Begum PS, Viswanath B, Rajagopal S (2017) Multifarious beneficial effect of nonessential amino acid, glycine: a review. Oxid Med Cell Longev 2017:8

    Article  CAS  Google Scholar 

  • Redalen KR, Sitter B, Bathen TF, Groholt KK, Hole KH, Dueland S, Flatmark K, Ree AH, Seierstad T (2016) High tumor glycine concentration is an adverse prognostic factor in locally advanced rectal cancer. Radiother Oncol 118(2):393–398

    Article  CAS  PubMed  Google Scholar 

  • Saunier E, Benelli C, Bortoli S (2016) The pyruvate dehydrogenase complex in cancer: an old metabolic gatekeeper regulated by new pathways and pharmacological agents. Int J Cancer 138(4):809–817

    Article  CAS  PubMed  Google Scholar 

  • Sellers K, Fox MP, Bousamra M II, Slone SP, Higashi RM, Miller DM, Wang Y, Yan J, Yuneva MO, Deshpande R, Lane AN, Fan TWM (2015) Pyruvate carboxylase is critical for non–small-cell lung cancer proliferation. J Clin Investig 125(2):687–698

    Article  PubMed  PubMed Central  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2017) Cancer statistics. CA Cancer J Clin 67(1):7–30

    Article  PubMed  Google Scholar 

  • Sradhanjali S, Reddy MM (2018) Inhibition of pyruvate dehydrogenase kinase as a therapeutic strategy against cancer. Curr Top Med Chem 18(6):444–453

    Article  CAS  PubMed  Google Scholar 

  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu JD, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao XH, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457(7231):910–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stacpoole PW (2017) Therapeutic targeting of the pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) axis in cancer. J Natl Cancer Inst 109:djx071

    Article  CAS  Google Scholar 

  • Sugden MC, Holness MJ (2006) Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases. Arch Physiol Biochem 112(3):139–149

    Article  CAS  PubMed  Google Scholar 

  • Tedeschi PM, Markert EK, Gounder M, Lin H, Dvorzhinski D, Dolfi SC, Chan LL, Qiu J, DiPaola RS, Hirshfield KM, Boros LG, Bertino JR, Oltvai ZN, Vazquez A (2013) Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Cell Death Dis 4:e877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tedeschi PM, Vazquez A, Kerrigan JE, Bertino JR (2015) Mitochondrial methylenetetrahydrofolate dehydrogenase (MTHFD2) overexpression is associated with tumor cell proliferation and is a novel target for drug development. Mol Cancer Res 13:1361–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsun ZY, Possemato R (2015) Amino acid management in cancer. Semin Cell Dev Biol 43:22–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez A, Kamphorst JJ, Markert EK, Schug ZT, Tardito S, Gottlieb E (2016) Cancer metabolism at a glance. J Cell Sci 129(18):3367–3373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YN, Gao D, Chen Z, Li SF, Gao CM, Cao DL, Liu F, Liu HX, Jiang Y (2013) Acridone derivative 8a induces oxidative stress-mediated apoptosis in CCRF-CEM leukemia cells: application of metabolomics in mechanistic studies of antitumor agents. PLoS ONE 8(5):e63572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburg O (1956) On respiratory impairment in cancer cells. Science (New York, NY) 124(3215):269–270

    CAS  Google Scholar 

  • Watanabe F, Takao M, Inoue K, Nishioka J, Nobori T, Shiraishi T, Kaneda M, Sakai T, Yada I, Shimpo H (2009) Immunohistochemical diagnosis of methylthioadenosine phosphorylase (MTAP) deficiency in non-small cell lung carcinoma. Lung Cancer (Amsterdam, Netherlands) 63(1):39–44

    Article  Google Scholar 

  • Wikoff WR, Grapov D, Fahrmann JF, DeFelice B, Rom WN, Pass HI, Kim K, Nguyen U, Taylor SL, Gandara DR, Kelly K, Fiehn O, Miyamoto S (2015) Metabolomic markers of altered nucleotide metabolism in early stage adenocarcinoma. Cancer Prev Res 8(5):410–418

    Article  CAS  Google Scholar 

  • Woo CC, Kaur K, Chan WX, Teo XQ, Lee THP (2018) Inhibiting glycine decarboxylase suppresses pyruvate-to-lactate metabolism in lung cancer cells. Front Oncol 8:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiang G, Li X, Cao L, Zhu C, Dai Z, Pan S, Lin S (2016) Frequent overexpression of PDK1 in primary nasopharyngeal carcinoma is associated with poor prognosis. Pathol Res Pract 212(12):1102–1107

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Venneti S, Nagrath D (2017) Glutaminolysis: a hallmark of cancer metabolism. Annu Rev Biomed Eng 19:163–194

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Yang HM, Gong DQ, Rose SP, Pirgozliev V, Chen XS, Wang ZY (2018) Transcriptome analysis of hepatic gene expression and DNA methylation in methionine- and betaine-supplemented geese (Anser cygnoides domesticus). Poult Sci 97(10):3463–3477

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Ren WK, Huang XG (2018) Potential mechanisms connecting purine metabolism and cancer therapy. Front Immunol 9:1697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, Nga ME, Bhakoo KK, Jayapal SR, Nichane M, Yu Q, Ahmed DA, Tan C, Sing WP, Tam J, Thirugananam A, Noghabi MS, Pang YH, Ang HS, Mitchell W, Robson P, Kaldis P, Soo RA, Swarup S, Lim EH, Lim B (2012) Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148(1–2):259–272

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the editor for careful review.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81302652, 81773600, and 4187602), the Natural Science Foundation of Fujian Province of China (No. 2018J01132), and the Fundamental Research Funds for the Central Universities (No. 20720180051).

Author information

Authors and Affiliations

Authors

Contributions

YL, YKQ, ZW, and MJF conceived the study and participated in the research design. ZL, XXZ, YC, and KJC conducted the experiments. YC, KQG, and RD performed data analysis and (or) prepared the figures. YC, KQG, and MJF contributed to the writing of the manuscript. All of the authors discussed the complete dataset to establish an integral and coherent analysis.

Corresponding authors

Correspondence to Zhen Wu or Meijuan Fang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Handling editor: J. M. Phang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 374 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, K., Cao, Y., Li, Z. et al. Glycine metabolomic changes induced by anticancer agents in A549 cells. Amino Acids 52, 793–809 (2020). https://doi.org/10.1007/s00726-020-02853-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-020-02853-0

Keywords

Navigation