Skip to main content
Log in

Impact of Dietary Selenium on Modulation of Expression of Several Non-Selenoprotein Genes Related to Key Ovarian Functions, Female Fertility, and Proteostasis: a Transcriptome-Based Analysis of the Aging Mice Ovaries

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Female reproductive (ovarian) aging is characterized by a marked decline in quantity and quality of follicles and oocytes, as well as alterations in the surrounding ovarian stroma. In our previous report, we have shown that dietary selenium (Se) insufficiency and supplementation differentially impacted the reproductive efficiency in aging mice; however, the precise understanding of such modulation is still incomplete. In the present study, we sought to determine the impact of low (mildly low level) and moderately high (medium level) Se diets on expression profile of non-selenoprotein genes in the ovaries of aging mice. For this purpose, the aged mice were divided in two groups and fed either a low Se (Se-L; 0.08 mg Se/kg) diet or a moderately high Se (Se-M; 0.33 mg Se/kg) diet. RNA-seq analysis revealed that a total of 168 genes were differentially expressed between the two groups. From these, 72 and 96 differentially expressed genes (DEGs) were found to be upregulated and downregulated, respectively. Gene Ontology (GO) and pathways enrichment (KEGG) analyses revealed that these DEGs were enriched in several key GO terms and biological pathways including PI3K-Akt signaling pathway, steroid hormone biosynthesis, signaling pathways regulating pluripotency of stem cells, Hippo signaling pathway, ovarian steroidogenesis, and Wnt signaling pathway. Further filtering of RNA-seq data revealed that several DEGs such as Star, Hsd3b6, Scd1, Bmp7, Aqp8, Gas1, Fzd1, and Wwc1 were implicated in key ovarian- and fertility-related functions. In addition, some of the DEGs were related to ER homeostasis and/or proteostasis. These results highlight that dietary low and moderately high (medium level) Se diets, in addition to modulation of selenoproteins, can also have an impact on expression of several non-selenoprotein genes in the ovaries of aging mice. To sum up, these findings add more value to our understanding of Se modulation of ovarian functions and female fertility and will pave a way for the focused mechanistic and functional studies in this domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Falone S, Santini S Jr, Cordone V, Grannonico M, Cacchio M, Di Emidio G, Tatone C, Amicarelli F (2016) Regular and moderate exercise counteracts the decline of antioxidant protection but not methylglyoxal-dependent glycative burden in the ovary of reproductively aging mice. Oxidative Med Cell Longev 2016:1–13

    Google Scholar 

  2. Dipali SS, Ferreira CR, Zhou LT, Pritchard MT, Duncan FE (2019) Histologic analysis and lipid profiling reveal reproductive age-associated changes in peri-ovarian adipose tissue. Reprod Biol Endocrinol 17(1):46

    PubMed  PubMed Central  Google Scholar 

  3. Broekmans F, Soules M, Fauser B (2009) Ovarian aging: mechanisms and clinical consequences. Endocr Rev 30(5):465–493

    CAS  PubMed  Google Scholar 

  4. Yang H, Qazi IH, Pan B, Angel C, Guo S, Yang J, Zhang Y, Ming Z, Zeng C, Meng Q (2019) Dietary selenium supplementation ameliorates female reproductive efficiency in aging mice. Antioxidants 8(12):634

    CAS  PubMed Central  Google Scholar 

  5. Liu M, Yin Y, Ye X, Zeng M, Zhao Q, Keefe DL, Liu L (2013) Resveratrol protects against age-associated infertility in mice. Hum Reprod 28(3):707–717

    CAS  PubMed  Google Scholar 

  6. Liu J, Liu M, Ye X, Liu K, Huang J, Wang L, Ji G, Liu N, Tang X, Baltz JM (2012) Delay in oocyte aging in mice by the antioxidant N-acetyl-L-cysteine (NAC). Hum Reprod 27(5):1411–1420

    CAS  PubMed  Google Scholar 

  7. Song C, Peng W, Yin S, Zhao J, Fu B, Zhang J, Mao T, Wu H, Zhang Y (2016) Melatonin improves age-induced fertility decline and attenuates ovarian mitochondrial oxidative stress in mice. Sci Rep 6:35165

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ben-Meir A, Burstein E, Borrego-Alvarez A, Chong J, Wong E, Yavorska T, Naranian T, Chi M, Wang Y, Bentov Y (2015) Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell 14(5):887–895

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Qazi IH, Angel C, Yang H, Pan B, Zoidis E, Zeng CJ, Han H, Zhou GB (2018) Selenium, selenoproteins, and female reproduction: a review. Molecules 23(12). https://doi.org/10.3390/molecules23123053

  10. Qazi IH, Angel C, Yang H, Zoidis E, Pan B, Wu Z, Ming Z, Zeng CJ, Meng Q, Han H, Zhou G (2019) Role of selenium and selenoproteins in male reproductive function: a review of past and present evidences. Antioxidants (Basel) 8(8). https://doi.org/10.3390/antiox8080268

  11. Wu RT, Cao L, Mattson E, Witwer KW, Cao J, Zeng H, He X, Combs GF Jr, Cheng WH (2017) Opposing impacts on healthspan and longevity by limiting dietary selenium in telomere dysfunctional mice. Aging Cell 16(1):125–135

    CAS  PubMed  Google Scholar 

  12. Yim SH, Clish CB, Gladyshev VN (2019) Selenium deficiency is associated with pro-longevity mechanisms. Cell Rep 27(9):2785–2797 e2783

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kipp A, Banning A, van Schothorst EM, Meplan C, Schomburg L, Evelo C, Coort S, Gaj S, Keijer J, Hesketh J, Brigelius-Flohe R (2009) Four selenoproteins, protein biosynthesis, and Wnt signalling are particularly sensitive to limited selenium intake in mouse colon. Mol Nutr Food Res 53(12):1561–1572. https://doi.org/10.1002/mnfr.200900105

    Article  CAS  PubMed  Google Scholar 

  14. Lammi MJ, Qu C (2018) Selenium-related transcriptional regulation of gene expression. Int J Mol Sci 19(9):2665

    PubMed Central  Google Scholar 

  15. Pappas AC, Zoidis E, Chadio SE (2019) Maternal selenium and developmental programming. Antioxidants 8(5):145

    CAS  PubMed Central  Google Scholar 

  16. Seremelis I, Danezis GP, Pappas AC, Zoidis E, Fegeros K (2019) Avian stress-related transcriptome and selenotranscriptome: role during exposure to heavy metals and heat stress. Antioxidants 8(7):216

    CAS  PubMed Central  Google Scholar 

  17. Sunde RA (2016) Selenium regulation of the selenoprotein and non-selenoprotein transcriptomes in a variety of species. In: Hatfield D., Schweizer U., Tsuji P., Gladyshev V. (eds) Selenium. Springer Cham. pp 175–186. https://doi.org/10.1007/978-3-319-41283-2_14

  18. Sunde RA, Raines AM (2011) Selenium regulation of the selenoprotein and nonselenoprotein transcriptomes in rodents. Adv Nutr 2(2):138–150

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dalto DB, Tsoi S, Dyck MK, Matte J-J (2018) Gene ontology analysis of expanded porcine blastocysts from gilts fed organic or inorganic selenium combined with pyridoxine. BMC Genomics 19(1):1–10

    Google Scholar 

  20. Dalto DB, Tsoi S, Audet I, Dyck MK, Foxcroft G, Matte JJ (2015) Gene expression of porcine blastocysts from gilts fed organic or inorganic selenium and pyridoxine. Reproduction 149(1):31–42

    CAS  PubMed  Google Scholar 

  21. Liu Z, Huang J, Nie Y, Qazi IH, Cao Y, Wang L, Ai Y, Zhou G, Wu K, Han H (2019) Selenium treatment enhanced clearance of Salmonella in chicken macrophages (HD11). Antioxidants 8(11):532

    CAS  PubMed Central  Google Scholar 

  22. Seale LA, Khadka VS, Menor M, Xie G, Watanabe LM, Sasuclark A, Guirguis K, Ha HY, Hashimoto AC, Peplowska K (2019) Combined omics reveals that disruption of the selenocysteine lyase gene affects amino acid pathways in mice. Nutrients 11(11):2584

    CAS  PubMed Central  Google Scholar 

  23. Hoffmann FW, Hashimoto AC, Shafer LA, Dow S, Berry MJ, Hoffmann PR (2010) Dietary selenium modulates activation and differentiation of CD4+ T cells in mice through a mechanism involving cellular free thiols. J Nutr 140(6):1155–1161

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Atef MM, Abd-Ellatif RN, Emam MN, Amer AI, Hafez YM (2019) Therapeutic potential of sodium selenite in letrozole induced polycystic ovary syndrome rat model: targeting mitochondrial approach (selenium in PCOS). Arch Biochem Biophys 671:245–254

    CAS  PubMed  Google Scholar 

  25. Modarres SZ, Heidar Z, Foroozanfard F, Rahmati Z, Aghadavod E, Asemi Z (2018) The effects of selenium supplementation on gene expression related to insulin and lipid in infertile polycystic ovary syndrome women candidate for in vitro fertilization: a randomized, double-blind, placebo-controlled trial. Biol Trace Elem Res 183(2):218–225

    Google Scholar 

  26. Karamali M, Dastyar F, Badakhsh MH, Aghadavood E, Amirani E, Asemi Z (2020) The effects of selenium supplementation on gene expression related to insulin and lipid metabolism, and pregnancy outcomes in patients with gestational diabetes mellitus: a randomized, double-blind, placebo-controlled trial. Biol Trace Elem Res 195:1–8. https://doi.org/10.1007/s12011-019-01818-z

  27. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930

    CAS  PubMed  Google Scholar 

  29. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    PubMed  PubMed Central  Google Scholar 

  30. Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32(18):2847–2849

    CAS  PubMed  Google Scholar 

  31. Wickham H (2016) ggplot2: Elegant graphics for data analysis. Springer New York, NY. https://doi.org/10.1007/978-0-387-98141-3

  32. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    CAS  PubMed  Google Scholar 

  33. Hoffmann PR, Jourdan-Le Saux C, Hoffmann FW, Chang PS, Bollt O, He Q, Tam EK, Berry MJ (2007) A role for dietary selenium and selenoproteins in allergic airway inflammation. J Immunol 179(5):3258–3267

    CAS  PubMed  Google Scholar 

  34. Drasch G, Mailänder S, Schlosser C, Roider G (2000) Content of non-mercury-associated selenium in human tissues. Biol Trace Elem Res 77(3):219–230

    CAS  PubMed  Google Scholar 

  35. Cao L, Zhang L, Zeng H, Wu RT, Wu T-L, Cheng W-H (2017) Analyses of selenotranscriptomes and selenium concentrations in response to dietary selenium deficiency and age reveal common and distinct patterns by tissue and sex in telomere-dysfunctional mice. J Nutr 147(10):1858–1866

    CAS  PubMed  Google Scholar 

  36. Köhrle J, Jakob F, Contempré B, Dumont JE (2005) Selenium, the thyroid, and the endocrine system. Endocr Rev 26(7):944–984. https://doi.org/10.1210/er.2001-0034

    Article  CAS  PubMed  Google Scholar 

  37. McCann JC, Ames BN (2011) Adaptive dysfunction of selenoproteins from the perspective of the triage theory: why modest selenium deficiency may increase risk of diseases of aging. FASEB J 25(6):1793–1814

    CAS  PubMed  Google Scholar 

  38. Ceko M, Hummitzsch K, Hatzirodos N, Bonner W, Aitken J, Russell D, Lane M, Rodgers R, Harris H (2014) X-ray fluorescence imaging and other analyses identify selenium and GPX1 as important in female reproductive function. Metallomics 7(1):71–82

    PubMed  Google Scholar 

  39. Bates JM, Spate VL, Morris JS, St. Germain DL, Galton VA (2000) Effects of selenium deficiency on tissue selenium content, deiodinase activity, and thyroid hormone economy in the rat during development*. Endocrinology 141(7):2490–2500. https://doi.org/10.1210/endo.141.7.7571

    Article  CAS  PubMed  Google Scholar 

  40. Schuermann Y, Rovani MT, Gasperin B, Ferreira R, Ferst J, Madogwe E, Goncalves PB, Bordignon V, Duggavathi R (2018) ERK1/2-dependent gene expression in the bovine ovulating follicle. Sci Rep 8(1):16170. https://doi.org/10.1038/s41598-018-34015-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yao X, Ei-Samahy MA, Fan L, Zheng L, Jin Y, Pang J, Zhang G, Liu Z, Wang F (2018) In vitro influence of selenium on the proliferation of and steroidogenesis in goat luteinized granulosa cells. Theriogenology 114:70–80. https://doi.org/10.1016/j.theriogenology.2018.03.014

    Article  CAS  PubMed  Google Scholar 

  42. Shi L, Song R, Yao X, Ren Y (2017) Effects of selenium on the proliferation, apoptosis and testosterone production of sheep Leydig cells in vitro. Theriogenology 93:24–32. https://doi.org/10.1016/j.theriogenology.2017.01.022

    Article  CAS  PubMed  Google Scholar 

  43. Hasegawa T, Zhao L, Caron KM, Majdic G, Suzuki T, Shizawa S, Sasano H, Parker KL (2000) Developmental roles of the steroidogenic acute regulatory protein (StAR) as revealed by StAR knockout mice. Mol Endocrinol 14(9):1462–1471. https://doi.org/10.1210/mend.14.9.0515

    Article  CAS  PubMed  Google Scholar 

  44. Ishii T, Hasegawa T, Pai CI, Yvgi-Ohana N, Timberg R, Zhao L, Majdic G, Chung BC, Orly J, Parker KL (2002) The roles of circulating high-density lipoproteins and trophic hormones in the phenotype of knockout mice lacking the steroidogenic acute regulatory protein. Mol Endocrinol 16(10):2297–2309. https://doi.org/10.1210/me.2001-0320

    Article  CAS  PubMed  Google Scholar 

  45. Stocco C, Telleria C, Gibori G (2007) The molecular control of corpus luteum formation, function, and regression. Endocr Rev 28(1):117–149. https://doi.org/10.1210/er.2006-0022

    Article  CAS  PubMed  Google Scholar 

  46. Peng L, Payne AH (2002) AP-2 gamma and the homeodomain protein distal-less 3 are required for placental-specific expression of the murine 3 beta-hydroxysteroid dehydrogenase VI gene, Hsd3b6. J Biol Chem 277(10):7945–7954. https://doi.org/10.1074/jbc.M106765200

  47. Yang J, Hu S, Rao M, Hu L, Lei H, Wu Y, Wang Y, Ke D, Xia W, Zhu CH (2017) Copper nanoparticle-induced ovarian injury, follicular atresia, apoptosis, and gene expression alterations in female rats. Int J Nanomedicine 12:5959–5971. https://doi.org/10.2147/ijn.s139215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fayezi S, Ghaffari Novin M, Darabi M, Norouzian M, Nouri M, Farzadi L, Darabi M (2018) Primary culture of human cumulus cells requires stearoyl-coenzyme a desaturase 1 activity for steroidogenesis and enhancing oocyte in vitro maturation. Reprod Sci 25(6):844–853. https://doi.org/10.1177/1933719117698578

    Article  CAS  PubMed  Google Scholar 

  49. Mardomi A, Nouri M, Farzadi L, Zarghami N, Mehdizadeh A, Yousefi M, Shanebandi D, Shaaker M, Darabi M (2019) Human charcoal-stripped serum supplementation enhances both the stearoyl-coenzyme a desaturase 1 activity of cumulus cells and the in vitro maturation of oocytes. Hum Fertil (Camb) 22(3):212–218. https://doi.org/10.1080/14647273.2018.1466400

    Article  CAS  Google Scholar 

  50. Aardema H, van Tol HTA, Wubbolts RW, Brouwers J, Gadella BM, Roelen BAJ (2017) Stearoyl-CoA desaturase activity in bovine cumulus cells protects the oocyte against saturated fatty acid stress. Biol Reprod 96(5):982–992. https://doi.org/10.1095/biolreprod.116.146159

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fan HY, Liu Z, Johnson PF, Richards JS (2011) CCAAT/enhancer-binding proteins (C/EBP)-alpha and -beta are essential for ovulation, luteinization, and the expression of key target genes. Mol Endocrinol 25(2):253–268. https://doi.org/10.1210/me.2010-0318

    Article  CAS  PubMed  Google Scholar 

  52. Guo K, Wolf V, Dharmarajan AM, Feng Z, Bielke W, Saurer S, Friis R (1998) Apoptosis-associated gene expression in the corpus luteum of the rat. Biol Reprod 58(3):739–746. https://doi.org/10.1095/biolreprod58.3.739

    Article  CAS  PubMed  Google Scholar 

  53. Ren YA, Liu Z, Mullany LK, Fan CM, Richards JS (2016) Growth arrest Specific-1 (GAS1) is a C/EBP target gene that functions in ovulation and corpus luteum formation in mice. Biol Reprod 94(2):44. https://doi.org/10.1095/biolreprod.115.133058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hsieh M, Johnson MA, Greenberg NM, Richards JS (2002) Regulated expression of Wnts and Frizzleds at specific stages of follicular development in the rodent ovary. Endocrinology 143(3):898–908. https://doi.org/10.1210/endo.143.3.8684

    Article  CAS  PubMed  Google Scholar 

  55. Harwood BN, Cross SK, Radford EE, Haac BE, De Vries WN (2008) Members of the WNT signaling pathways are widely expressed in mouse ovaries, oocytes, and cleavage stage embryos. Dev Dyn 237(4):1099–1111. https://doi.org/10.1002/dvdy.21491

    Article  CAS  PubMed  Google Scholar 

  56. Lapointe E, Boyer A, Rico C, Paquet M, Franco HL, Gossen J, DeMayo FJ, Richards JS, Boerboom D (2012) FZD1 regulates cumulus expansion genes and is required for normal female fertility in mice. Biol Reprod 87(5):104. https://doi.org/10.1095/biolreprod.112.102608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kawashima I, Kawamura K (2018) Regulation of follicle growth through hormonal factors and mechanical cues mediated by hippo signaling pathway. Syst Biol Reprod Med 64(1):3–11

    CAS  PubMed  Google Scholar 

  58. Sun T, Diaz FJ (2019) Ovulatory signals alter granulosa cell behavior through YAP1 signaling. Reprod Biol Endocrinol 17(1):113

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sun T (2016) The roles of Hippo signaling pathway in mouse ovarian function. Ph.D. Dissertation, The Pennsylvania State University. https://etda.libraries.psu.edu/catalog/28915

  60. Sun T, Pepling ME, Diaz FJ (2015) Lats1 deletion causes increased germ cell apoptosis and follicular cysts in mouse ovaries. Biol Reprod 93(1):22 21-11

    PubMed  Google Scholar 

  61. Glister C, Kemp CF, Knight PG (2004) Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4,-6 and-7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin. Reproduction 127(2):239–254

    CAS  PubMed  Google Scholar 

  62. Lee W-S, Otsuka F, Moore RK, Shimasaki S (2001) Effect of bone morphogenetic protein-7 on folliculogenesis and ovulation in the rat. Biol Reprod 65(4):994–999

    CAS  PubMed  Google Scholar 

  63. Shimasaki S, Zachow RJ, Li D, Kim H, S-i I, Ueno N, Sampath K, Chang RJ, Erickson GF (1999) A functional bone morphogenetic protein system in the ovary. Proc Natl Acad Sci 96(13):7282–7287

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Rossi RO, Costa JJ, Silva AW, Saraiva MV, Van den Hurk R, Silva JR (2016) The bone morphogenetic protein system and the regulation of ovarian follicle development in mammals. Zygote 24(1):1–17

    CAS  PubMed  Google Scholar 

  65. Regan SL, Knight PG, Yovich JL, Leung Y, Arfuso F, Dharmarajan A (2018) Involvement of bone morphogenetic proteins (BMP) in the regulation of ovarian function. In: Gerald Litwack (eds) Vitamins and hormones. Academic Press, vol 107. pp 227 261. https://doi.org/10.1016/bs.vh.2018.01.015

  66. Lee WS, Yoon SJ, Yoon TK, Cha KY, Lee SH, Shimasaki S, Lee S, Lee KA (2004) Effects of bone morphogenetic protein-7 (BMP-7) on primordial follicular growth in the mouse ovary. Mol Reprod Dev 69(2):159–163

    CAS  PubMed  Google Scholar 

  67. Araújo VR, Silva CM, Magalhães DM, da Silva GM, Báo SN, Silva JRV, de Figueiredo JR, Rodrigues APR (2010) Effect of bone morphogenetic protein-7 (BMP-7) on in vitro survival of caprine preantral follicles. Pesqui Vet Bras 30(4):305–310

    Google Scholar 

  68. Regan SL, Knight PG, Yovich JL, Stanger JD, Leung Y, Arfuso F, Dharmarajan A, Almahbobi G (2016) Dysregulation of granulosal bone morphogenetic protein receptor 1B density is associated with reduced ovarian reserve and the age-related decline in human fertility. Mol Cell Endocrinol 425:84–93

    CAS  PubMed  Google Scholar 

  69. Su W, Qiao Y, Yi F, Guan X, Zhang D, Zhang S, Hao F, Xiao Y, Zhang H, Guo L (2010) Increased female fertility in aquaporin 8-deficient mice. IUBMB Life 62(11):852–857

    CAS  PubMed  Google Scholar 

  70. Su W, Guan X, Zhang D, Sun M, Yang L, Yi F, Hao F, Feng X, Ma T (2013) Occurrence of multi-oocyte follicles in aquaporin 8-deficient mice. Reprod Biol Endocrinol 11(1):88

    PubMed  PubMed Central  Google Scholar 

  71. Wang D, Di X, Wang J, Li M, Zhang D, Hou Y, Zhang G, Hu J, Zhang H, Sun M (2018) Increased formation of follicular antrum in aquaporin-8-deficient mice is due to defective proliferation and migration, and not steroidogenesis of granulosa cells. Front Physiol 9:1193

    PubMed  PubMed Central  Google Scholar 

  72. Xiong Z, Li B, Wang L, Zeng X, Li B, Sha X, Liu H (2019) AQP8 and AQP9 expression in patients with polycystic ovary syndrome and its association with in vitro fertilization-embryo transfer outcomes. Exp Ther Med 18(1):755–760

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Méplan C, Johnson IT, Polley AC, Cockell S, Bradburn DM, Commane DM, Arasaradnam RP, Mulholland F, Zupanic A, Mathers JC (2016) Transcriptomics and proteomics show that selenium affects inflammation, cytoskeleton, and cancer pathways in human rectal biopsies. FASEB J 30(8):2812–2825

    PubMed  Google Scholar 

  74. Pitts MW, Hoffmann PR (2018) Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis. Cell Calcium 70:76–86. https://doi.org/10.1016/j.ceca.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  75. Anisimova AS, Alexandrov AI, Makarova NE, Gladyshev VN, Dmitriev SE (2018) Protein synthesis and quality control in aging. Aging (Albany NY) 10(12):4269–4288

    CAS  Google Scholar 

  76. Anisimova AS, Meerson MB, Gerashchenko MV, Kulakovskiy IV, Dmitriev SE, Gladyshev VN (2020) Multi-faceted deregulation of gene expression and protein synthesis with age. BioRxiv 2020.01.19.911404.  https://doi.org/10.1101/2020.01.19.911404

  77. Hartl FU (2016) Cellular homeostasis and aging. Annu Rev Biochem 85:1–4. https://doi.org/10.1146/annurev-biochem-011116-110806

    Article  CAS  PubMed  Google Scholar 

  78. Wang L, Xu Y, Rogers H, Saidi L, Noguchi CT, Li H, Yewdell JW, Guydosh NR, Ye Y (2020) UFMylation of RPL26 links translocation-associated quality control to endoplasmic reticulum protein homeostasis. Cell Res 30(1):5–20. https://doi.org/10.1038/s41422-019-0236-6

    Article  CAS  PubMed  Google Scholar 

  79. Walczak CP, Leto DE, Zhang L, Riepe C, Muller RY, DaRosa PA, Ingolia NT, Elias JE, Kopito RR (2019) Ribosomal protein RPL26 is the principal target of UFMylation. Proc Natl Acad Sci U S A 116(4):1299–1308. https://doi.org/10.1073/pnas.1816202116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen J, Guo K, Kastan MB (2012) Interactions of nucleolin and ribosomal protein L26 (RPL26) in translational control of human p53 mRNA. J Biol Chem 287(20):16467–16476. https://doi.org/10.1074/jbc.M112.349274

  81. Wen JH, Wen H, Gibson-Corley KN, Glenn KA (2015) FBG1 is the final arbitrator of A1AT-Z degradation. PLoS One 10(8):e0135591

    PubMed  PubMed Central  Google Scholar 

  82. Atkin G, Hunt J, Minakawa E, Sharkey L, Tipper N, Tennant W, Paulson HL (2014) F-box only protein 2 (Fbxo2) regulates amyloid precursor protein levels and processing. J Biol Chem 289(10):7038–7048

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gong B, Chen F, Pan Y, Arrieta-Cruz I, Yoshida Y, Haroutunian V, Pasinetti GM (2010) SCFFbx2-E3-ligase-mediated degradation of BACE1 attenuates Alzheimer’s disease amyloidosis and improves synaptic function. Aging Cell 9(6):1018–1031

    CAS  PubMed  Google Scholar 

  84. Laskowska E, Kuczyńska-Wiśnik D, Lipińska B (2019) Proteomic analysis of protein homeostasis and aggregation. J Proteome 198:98–112

    CAS  Google Scholar 

  85. Sun GD, Kobayashi T, Abe M, Tada N, Adachi H, Shiota A, Totsuka Y, Hino O (2007) The endoplasmic reticulum stress-inducible protein Niban regulates eIF2α and S6K1/4E-BP1 phosphorylation. Biochem Biophys Res Commun 360(1):181–187

    CAS  PubMed  Google Scholar 

  86. Tang S, Wang J, Liu J, Huang Y, Zhou Y, Yang S, Zhang W, Yang M, Zhang H (2019) Niban protein regulates apoptosis in HK-2 cells via caspase-dependent pathway. Ren Fail 41(1):455–466

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Miyakoshi K, Murphy MJ, Yeoman RR, Mitra S, Dubay CJ, Hennebold JD (2006) The identification of novel ovarian proteases through the use of genomic and bioinformatic methodologies. Biol Reprod 75(6):823–835

    CAS  PubMed  Google Scholar 

  88. Wahlberg P, As N, Ahlskog N, Liu K, Ny T (2008) Expression and localization of the serine proteases high-temperature requirement factor A1, serine protease 23, and serine protease 35 in the mouse ovary. Endocrinology 149(10):5070–5077

    CAS  PubMed  Google Scholar 

  89. Quirós PM, Langer T, López-Otín C (2015) New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol 16(6):345–359

    PubMed  Google Scholar 

  90. Peters AE, Mihalas BP, Bromfield EG, Roman SD, Nixon B, Sutherland JM (2020) Autophagy in female fertility: a role in oxidative stress and aging. Antioxid Redox Signal 32(8):550-568. https://doi.org/10.1089/ars.2019.7986

  91. Pagmantidis V, Meplan C, van Schothorst EM, Keijer J, Hesketh JE (2008) Supplementation of healthy volunteers with nutritionally relevant amounts of selenium increases the expression of lymphocyte protein biosynthesis genes. Am J Clin Nutr 87(1):181–189. https://doi.org/10.1093/ajcn/87.1.181

    Article  CAS  PubMed  Google Scholar 

  92. Xiong Y, Yin Q, Jin E, Chen H, He S (2020) Selenium attenuates chronic heat stress-induced apoptosis via the inhibition of endoplasmic reticulum stress in mouse granulosa cells. Molecules 25(3):557

    CAS  PubMed Central  Google Scholar 

  93. Rayman MP, Winther KH, Pastor-Barriuso R, Cold F, Thvilum M, Stranges S, Guallar E, Cold S (2018) Effect of long-term selenium supplementation on mortality: results from a multiple-dose, randomised controlled trial. Free Radic Biol Med 127:46–54

    CAS  PubMed  Google Scholar 

  94. Rayman MP (2020) Selenium intake, status, and health: a complex relationship. Hormones:19: 9–14. https://doi.org/10.1007/s42000-019-00125-5

Download references

Acknowledgments

Izhar Hyder Qazi is highly thankful to Professor Leopold Flohe, Universidad de la República, Uruguay, and Dr. Antje Banning, for helpful discussion on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangbin Zhou or Hongbing Han.

Ethics declarations

Animal handling and all experiments conducted during this research were performed in compliance to the standard experimental animal care and welfare regulations duly approved by the Institutional Animal Ethical and Welfare Committee (AEWC) of Sichuan Agricultural University, China (AEWC2016, January 6, 2016).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(XLSX 36.0 kb).

ESM 2

(PDF 454 kb).

ESM 3

(XLSX 17.2 kb).

ESM 4

(XLSX 14.1 kb).

ESM 5

(XLSX 12.5 kb).

ESM 6

(XLSX 23.3 kb).

ESM 7

(XLSX 12.2 kb).

ESM 8

(PDF 81.2 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qazi, I.H., Cao, Y., Yang, H. et al. Impact of Dietary Selenium on Modulation of Expression of Several Non-Selenoprotein Genes Related to Key Ovarian Functions, Female Fertility, and Proteostasis: a Transcriptome-Based Analysis of the Aging Mice Ovaries. Biol Trace Elem Res 199, 633–648 (2021). https://doi.org/10.1007/s12011-020-02192-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02192-x

Keywords

Navigation