1932

Abstract

In recent years, our perspective on the cell nucleus has evolved from the view that it is a passive but permeable storage organelle housing the cell's genetic material to an understanding that it is in fact a highly organized, integrative, and dynamic regulatory hub. In particular, the subcompartment at the nuclear periphery, comprising the nuclear envelope and the underlying lamina, is now known to be a critical nexus in the regulation of chromatin organization, transcriptional output, biochemical and mechanosignaling pathways, and, more recently, cytoskeletal organization. We review the various functional roles of the nuclear periphery and their deregulation in diseases of the nuclear envelope, specifically the laminopathies, which, despite their rarity, provide insights into contemporary health-care issues.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-121219-083616
2020-08-31
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/genom/21/1/annurev-genom-121219-083616.html?itemId=/content/journals/10.1146/annurev-genom-121219-083616&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aebi U, Cohn J, Buhle L, Gerace L 1986. The nuclear lamina is a meshwork of intermediate-type filaments. Nature 323:560–64
    [Google Scholar]
  2. 2. 
    Aix-Marseille Univ 2019. UMD-LMNA mutations database Updated July 31, 2019. http://www.umd.be/LMNA
  3. 3. 
    Akhtar W, de Jong J, Pindyurin AV, Pagie L, Meuleman W et al. 2013. Chromatin position effects assayed by thousands of reporters integrated in parallel. Cell 154:914–27
    [Google Scholar]
  4. 4. 
    Asfour HA, Allouh MZ, Said RS 2018. Myogenic regulatory factors: the orchestrators of myogenesis after 30 years of discovery. Exp. Biol. Med. 243:118–28
    [Google Scholar]
  5. 5. 
    Bakay M, Wang Z, Melcon G, Schiltz L, Xuan J et al. 2006. Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb-MyoD pathways in muscle regeneration. Brain 129:996–1013
    [Google Scholar]
  6. 6. 
    Balmus G, Larrieu D, Barros AC, Collins C, Abrudan M et al. 2018. Targeting of NAT10 enhances healthspan in a mouse model of human accelerated aging syndrome. Nat. Commun. 9:1700
    [Google Scholar]
  7. 7. 
    Bertero A, Fields PA, Smith AST, Leonard A, Beussman K et al. 2019. Chromatin compartment dynamics in a haploinsufficient model of cardiac laminopathy. J. Cell Biol. 218:2919–44
    [Google Scholar]
  8. 8. 
    Bian Q, Khanna N, Alvikas J, Belmont AS 2013. β-Globin cis-elements determine differential nuclear targeting through epigenetic modifications. J. Cell Biol. 203:767–83
    [Google Scholar]
  9. 9. 
    Bonne G, Di Barletta MR, Varnous S, Becane HM, Hammouda EH et al. 1999. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat. Genet. 21:285–88
    [Google Scholar]
  10. 10. 
    Bothmer A, Robbiani DF, Feldhahn N, Gazumyan A, Nussenzweig A, Nussenzweig MC 2010. 53BP1 regulates DNA resection and the choice between classical and alternative end joining during class switch recombination. J. Exp. Med. 207:855–65
    [Google Scholar]
  11. 11. 
    Boulay G, Dubuissez M, Van Rechem C, Forget A, Helin K et al. 2012. Hypermethylated in cancer 1 (HIC1) recruits Polycomb repressive complex 2 (PRC2) to a subset of its target genes through interaction with human Polycomb-like (hPCL) proteins. J. Biol. Chem. 287:10509–24
    [Google Scholar]
  12. 12. 
    Bunting SF, Callén E, Wong N, Chen HT, Polato F et al. 2010. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141:243–54
    [Google Scholar]
  13. 13. 
    Cao H, Hegele RA. 2000. Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum. Mol. Genet. 9:109–12
    [Google Scholar]
  14. 14. 
    Chang W, Wang Y, Luxton GWG, Ostlund C, Worman HJ, Gundersen GG 2019. Imbalanced nucleocytoskeletal connections create common polarity defects in progeria and physiological aging. PNAS 116:3578–83
    [Google Scholar]
  15. 15. 
    Chatzifrangkeskou M, Le Dour C, Wu W, Morrow JP, Joseph LC et al. 2016. ERK1/2 directly acts on CTGF/CCN2 expression to mediate myocardial fibrosis in cardiomyopathy caused by mutations in the lamin A/C gene. Hum. Mol. Genet. 25:2220–33
    [Google Scholar]
  16. 16. 
    Chen CY, Chi YH, Mutalif RA, Starost MF, Myers TG et al. 2012. Accumulation of the inner nuclear envelope protein Sun1 is pathogenic in progeric and dystrophic laminopathies. Cell 149:565–77
    [Google Scholar]
  17. 17. 
    Chen L, Lee L, Kudlow BA, Dos Santos HG, Sletvold O et al. 2003. LMNA mutations in atypical Werner's syndrome. Lancet 362:440–45
    [Google Scholar]
  18. 18. 
    Chojnowski A, Ong PF, Wong ES, Lim JS, Mutalif RA et al. 2015. Progerin reduces LAP2α-telomere association in Hutchinson-Gilford progeria. eLife 4:e07759
    [Google Scholar]
  19. 19. 
    Clevers H. 2006. Wnt/β-catenin signaling in development and disease. Cell 127:469–80
    [Google Scholar]
  20. 20. 
    Coffinier C, Jung HJ, Nobumori C, Chang S, Tu Y et al. 2011. Deficiencies in lamin B1 and lamin B2 cause neurodevelopmental defects and distinct nuclear shape abnormalities in neurons. Mol. Biol. Cell 22:4683–93
    [Google Scholar]
  21. 21. 
    Coghlan MP, Culbert AA, Cross DA, Corcoran SL, Yates JW et al. 2000. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem. Biol. 7:793–803
    [Google Scholar]
  22. 22. 
    Cohen TV, Gnocchi VF, Cohen JE, Phadke A, Liu H et al. 2013. Defective skeletal muscle growth in lamin A/C-deficient mice is rescued by loss of Lap2α. Hum. Mol. Genet. 22:2852–69
    [Google Scholar]
  23. 23. 
    Cremer T, Cremer C. 2006. Rise, fall and resurrection of chromosome territories: a historical perspective. Part I. The rise of chromosome territories. Eur. J. Histochem. 50:161–76
    [Google Scholar]
  24. 24. 
    Cutler JA, Wong X, Hoskins VE, Gordon M, Madugundu AK et al. 2019. Mapping the micro-proteome of the nuclear lamina and lamin associated domains. bioRxiv 828210. https://doi.org/10.1101/828210
    [Crossref]
  25. 25. 
    Davies BS, Coffinier C, Yang SH, Barnes RH II, Jung HJ et al. 2011. Investigating the purpose of prelamin A processing. Nucleus 2:4–9
    [Google Scholar]
  26. 26. 
    De La Rosa J, Freije JMP, Cabanillas R, Osorio FG, Fraga MF et al. 2013. Prelamin A causes progeria through cell-extrinsic mechanisms and prevents cancer invasion. Nat. Commun. 4:2268
    [Google Scholar]
  27. 27. 
    de Las Heras JI, Meinke P, Batrakou DG, Srsen V, Zuleger N et al. 2013. Tissue specificity in the nuclear envelope supports its functional complexity. Nucleus 4:460–77
    [Google Scholar]
  28. 28. 
    De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J et al. 2003. Lamin A truncation in Hutchinson-Gilford progeria. Science 300:2055
    [Google Scholar]
  29. 29. 
    De Sandre-Giovannoli A, Chaouch M, Kozlov S, Vallat JM, Tazir M et al. 2002. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am. J. Hum. Genet. 70:726–36
    [Google Scholar]
  30. 30. 
    Del Campo L, Sanchez-Lopez A, Salaices M, von Kleeck RA, Exposito E et al. 2019. Vascular smooth muscle cell-specific progerin expression in a mouse model of Hutchinson-Gilford progeria syndrome promotes arterial stiffness: therapeutic effect of dietary nitrite. Aging Cell 18:e12936
    [Google Scholar]
  31. 31. 
    Dhe-Paganon S, Werner ED, Chi YI, Shoelson SE 2002. Structure of the globular tail of nuclear lamin. J. Biol. Chem. 277:17381–84
    [Google Scholar]
  32. 32. 
    Dixon JR, Selvaraj S, Yue F, Kim A, Li Y et al. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–80
    [Google Scholar]
  33. 33. 
    Dorner D, Vlcek S, Foeger N, Gajewski A, Makolm C et al. 2006. Lamina-associated polypeptide 2α regulates cell cycle progression and differentiation via the retinoblastoma-E2F pathway. J. Cell Biol. 173:83–93
    [Google Scholar]
  34. 34. 
    Dreesen O, Chojnowski A, Ong PF, Zhao TY, Common JE et al. 2013. Lamin B1 fluctuations have differential effects on cellular proliferation and senescence. J. Cell Biol. 200:605–17
    [Google Scholar]
  35. 35. 
    Dutour A, Roll P, Gaborit B, Courrier S, Alessi M-C et al. 2011. High prevalence of laminopathies among patients with metabolic syndrome. Hum. Mol. Genet. 20:3779–86
    [Google Scholar]
  36. 36. 
    Elenbaas JS, Bragazzi Cunha J, Azuero-Dajud R, Nelson B, Oral EA et al. 2018. Lamin A/C maintains exocrine pancreas homeostasis by regulating stability of RB and activity of E2F. Gastroenterology 154:162529.e8
    [Google Scholar]
  37. 37. 
    Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J et al. 2003. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423:293–98
    [Google Scholar]
  38. 38. 
    Espada J, Varela I, Flores I, Ugalde AP, Cadinanos J et al. 2008. Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. J. Cell Biol. 181:27–35
    [Google Scholar]
  39. 39. 
    Feng XH, Derynck R. 2005. Specificity and versatility in TGF-β signaling through Smads. Annu. Rev. Cell Dev. Biol. 21:659–93
    [Google Scholar]
  40. 40. 
    Fong LG, Ng JK, Lammerding J, Vickers TA, Meta M et al. 2006. Prelamin A and lamin A appear to be dispensable in the nuclear lamina. J. Clin. Investig. 116:743–52
    [Google Scholar]
  41. 41. 
    Fong LG, Ng JK, Meta M, Coté N, Yang SH et al. 2004. Heterozygosity for Lmna deficiency eliminates the progeria-like phenotypes in Zmpste24-deficient mice. PNAS 101:18111–16
    [Google Scholar]
  42. 42. 
    Furukawa K, Hotta Y. 1993. cDNA cloning of a germ cell specific lamin B3 from mouse spermatocytes and analysis of its function by ectopic expression in somatic cells. EMBO J 12:97–106
    [Google Scholar]
  43. 43. 
    Furukawa K, Inagaki H, Hotta Y 1994. Identification and cloning of an mRNA coding for a germ cell-specific A-type lamin in mice. Exp. Cell Res. 212:426–30
    [Google Scholar]
  44. 44. 
    Gerace L, Huber MD. 2012. Nuclear lamina at the crossroads of the cytoplasm and nucleus. J. Struct. Biol. 177:24–31
    [Google Scholar]
  45. 45. 
    Gibbs-Seymour I, Markiewicz E, Bekker-Jensen S, Mailand N, Hutchison CJ 2015. Lamin A/C-dependent interaction with 53BP1 promotes cellular responses to DNA damage. Aging Cell 14:162–69
    [Google Scholar]
  46. 46. 
    González JM, Navarro-Puche A, Casar B, Crespo P, Andrés V 2008. Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope. J. Cell Biol. 183:653–66
    [Google Scholar]
  47. 47. 
    Gonzalez-Sandoval A, Towbin BD, Kalck V, Cabianca DS, Gaidatzis D et al. 2015. Perinuclear anchoring of H3K9-methylated chromatin stabilizes induced cell fate in C. elegans embryos. Cell 163:1333–47
    [Google Scholar]
  48. 48. 
    Gonzalo S. 2014. DNA damage and lamins. Adv. Exp. Med. Biol. 773:377–99
    [Google Scholar]
  49. 49. 
    Grossman E, Medalia O, Zwerger M 2012. Functional architecture of the nuclear pore complex. Annu. Rev. Biophys. 41:557–84
    [Google Scholar]
  50. 50. 
    Gruenbaum Y, Foisner R. 2015. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu. Rev. Biochem. 84:131–64
    [Google Scholar]
  51. 51. 
    Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB et al. 2008. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–51
    [Google Scholar]
  52. 52. 
    Gupta P, Bilinska ZT, Sylvius N, Boudreau E, Veinot JP et al. 2010. Genetic and ultrastructural studies in dilated cardiomyopathy patients: a large deletion in the lamin A/C gene is associated with cardiomyocyte nuclear envelope disruption. Basic Res. Cardiol. 105:365–77
    [Google Scholar]
  53. 53. 
    Hakim O, Misteli T. 2012. SnapShot: chromosome conformation capture. Cell 148:1068.e1–2
    [Google Scholar]
  54. 54. 
    Harhouri K, Frankel D, Bartoli C, Roll P, De Sandre-Giovannoli A, Levy N 2018. An overview of treatment strategies for Hutchinson-Gilford progeria syndrome. Nucleus 9:246–57
    [Google Scholar]
  55. 55. 
    Harr JC, Luperchio TR, Wong X, Cohen E, Wheelan SJ, Reddy KL 2015. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J. Cell Biol. 208:33–52
    [Google Scholar]
  56. 56. 
    Hennekam RC. 2006. Hutchinson-Gilford progeria syndrome: review of the phenotype. Am. J. Med. Genet. A 140:2603–24
    [Google Scholar]
  57. 57. 
    Hernandez L, Roux KJ, Wong ES, Mounkes LC, Mutalif R et al. 2010. Functional coupling between the extracellular matrix and nuclear lamina by Wnt signaling in progeria. Dev. Cell 19:413–25
    [Google Scholar]
  58. 58. 
    Hoger TH, Grund C, Franke WW, Krohne G 1991. Immunolocalization of lamins in the thick nuclear lamina of human synovial cells. Eur. J. Cell Biol. 54:150–56
    [Google Scholar]
  59. 59. 
    Hutchison CJ. 2013. B-type lamins in health and disease. Semin. Cell Dev. Biol. 29:158–63
    [Google Scholar]
  60. 60. 
    Infante E, Castagnino A, Ferrari R, Monteiro P, Agüera-González S et al. 2018. LINC complex-Lis1 interplay controls MT1-MMP matrix digest-on-demand response for confined tumor cell migration. Nat. Commun. 9:2443
    [Google Scholar]
  61. 61. 
    Ivorra C, Kubicek M, Gonzalez JM, Sanz-Gonzalez SM, Alvarez-Barrientos A et al. 2006. A mechanism of AP-1 suppression through interaction of c-Fos with lamin A/C. Genes Dev 20:307–20
    [Google Scholar]
  62. 62. 
    Janin A, Bauer D, Ratti F, Millat G, Mejat A 2017. Nuclear envelopathies: a complex LINC between nuclear envelope and pathology. Orphanet J. Rare Dis. 12:147
    [Google Scholar]
  63. 63. 
    Jefferies JL, Towbin JA. 2010. Dilated cardiomyopathy. Lancet 375:752–62
    [Google Scholar]
  64. 64. 
    Jung HJ, Coffinier C, Choe Y, Beigneux AP, Davies BS et al. 2012. Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. PNAS 109:E423–31
    [Google Scholar]
  65. 65. 
    Jung HJ, Nobumori C, Goulbourne CN, Tu Y, Lee JM et al. 2013. Farnesylation of lamin B1 is important for retention of nuclear chromatin during neuronal migration. PNAS 110:E1923–32
    [Google Scholar]
  66. 66. 
    Kim Y, Zheng X, Zheng Y 2013. Proliferation and differentiation of mouse embryonic stem cells lacking all lamins. Cell Res 23:1420–23
    [Google Scholar]
  67. 67. 
    Kohwi M, Lupton JR, Lai S-L, Miller MR, Doe CQ 2013. Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila. Cell 152:97–108
    [Google Scholar]
  68. 68. 
    Korenjak M, Brehm A. 2005. E2F–Rb complexes regulating transcription of genes important for differentiation and development. Curr. Opin. Genet. Dev. 15:520–27
    [Google Scholar]
  69. 69. 
    Korfali N, Wilkie GS, Swanson SK, Srsen V, de Las Heras J et al. 2012. The nuclear envelope proteome differs notably between tissues. Nucleus 3:552–64
    [Google Scholar]
  70. 70. 
    Kwan R, Brady GF, Brzozowski M, Weerasinghe SV, Martin H et al. 2017. Hepatocyte-specific deletion of mouse lamin A/C leads to male-selective steatohepatitis. Cell Mol. Gastroenterol. Hepatol. 4:365–83
    [Google Scholar]
  71. 71. 
    Lammerding J, Fong LG, Ji JY, Reue K, Stewart CL et al. 2006. Lamins A and C but not lamin B1 regulate nuclear mechanics. J. Biol. Chem. 281:25768–80
    [Google Scholar]
  72. 72. 
    Lammerding J, Lee RT. 2005. The nuclear membrane and mechanotransduction: impaired nuclear mechanics and mechanotransduction in lamin A/C deficient cells. Novartis Found. Symp. 264:264–73
    [Google Scholar]
  73. 73. 
    Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T et al. 2004. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Investig. 113:370–78
    [Google Scholar]
  74. 74. 
    Lee JS, Hale CM, Panorchan P, Khatau SB, George JP et al. 2007. Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. Biophys. J. 93:2542–52
    [Google Scholar]
  75. 75. 
    Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–93
    [Google Scholar]
  76. 76. 
    Lin F, Worman HJ. 1993. Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J. Biol. Chem. 268:16321–26
    [Google Scholar]
  77. 77. 
    Liu B, Wang J, Chan KM, Tjia WM, Deng W et al. 2005. Genomic instability in laminopathy-based premature aging. Nat. Med. 11:780–85
    [Google Scholar]
  78. 78. 
    Liu B, Wang Z, Ghosh S, Zhou Z 2013. Defective ATM-Kap-1-mediated chromatin remodeling impairs DNA repair and accelerates senescence in progeria mouse model. Aging Cell 12:316–18
    [Google Scholar]
  79. 79. 
    Lochs SJA, Kefalopoulou S, Kind J 2019. Lamina associated domains and gene regulation in development and cancer. Cells 8:271
    [Google Scholar]
  80. 80. 
    Loo TH, Ye X, Chai RJ, Ito M, Bonne G et al. 2019. The mammalian LINC complex component SUN1 regulates muscle regeneration by modulating Drosha activity. eLife 8:e49485
    [Google Scholar]
  81. 81. 
    Lopez-Mejia IC, de Toledo M, Chavey C, Lapasset L, Cavelier P et al. 2014. Antagonistic functions of LMNA isoforms in energy expenditure and lifespan. EMBO Rep 15:529–39
    [Google Scholar]
  82. 82. 
    Lottersberger F, Karssemeijer RA, Dimitrova N, De Lange T 2015. 53BP1 and the LINC complex promote microtubule-dependent DSB mobility and DNA repair. Cell 163:880–93
    [Google Scholar]
  83. 83. 
    Luperchio T, Sauria M, Hoskins V, Wong X, DeBoy E et al. 2018. The repressive genome compartment is established early in the cell cycle before forming the lamina associated domains. bioRxiv 481598. https://doi.org/10.1101/481598
    [Crossref]
  84. 84. 
    Machiels BM, Zorenc AH, Endert JM, Kuijpers HJ, van Eys GJ et al. 1996. An alternative splicing product of the lamin A/C gene lacks exon 10. J. Biol. Chem. 271:9249–53
    [Google Scholar]
  85. 85. 
    Magracheva E, Kozlov S, Stewart CL, Wlodawer A, Zdanov A 2009. Structure of the lamin A/C R482W mutant responsible for dominant familial partial lipodystrophy (FPLD). Acta Crystallogr. F 65:665–70
    [Google Scholar]
  86. 86. 
    Maniotis AJ, Chen CS, Ingber DE 1997. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. PNAS 94:849–54
    [Google Scholar]
  87. 87. 
    Markiewicz E, Tilgner K, Barker N, van de Wetering M, Clevers H et al. 2006. The inner nuclear membrane protein Emerin regulates β-catenin activity by restricting its accumulation in the nucleus. EMBO J 25:3275–85
    [Google Scholar]
  88. 88. 
    Massagué J. 2000. How cells read TGF-β signals. Nat. Rev. Mol. Cell Biol. 1:169–78
    [Google Scholar]
  89. 89. 
    Mattout A, Pike BL, Towbin BD, Bank EM, Gonzalez-Sandoval A et al. 2011. An EDMD mutation in C. elegans lamin blocks muscle-specific gene relocation and compromises muscle integrity. Curr. Biol. 21:1603–14
    [Google Scholar]
  90. 90. 
    Maurer M, Lammerding J. 2019. The driving force: nuclear mechanotransduction in cellular function, fate, and disease. Annu. Rev. Biomed. Eng. 21:443–68
    [Google Scholar]
  91. 91. 
    McCord RP, Nazario-Toole A, Zhang H, Chines PS, Zhan Y et al. 2013. Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome. Genome Res 23:260–69
    [Google Scholar]
  92. 92. 
    Melcon G, Kozlov S, Cutler DA, Sullivan T, Hernandez L et al. 2006. Loss of emerin at the nuclear envelope disrupts the Rb1/E2F and MyoD pathways during muscle regeneration. Hum. Mol. Genet. 15:637–51
    [Google Scholar]
  93. 93. 
    Mirny LA. 2011. The fractal globule as a model of chromatin architecture in the cell. Chromosome Res 19:37–51
    [Google Scholar]
  94. 94. 
    Moldes M, Zuo Y, Morrison RF, Silva D, Park BH et al. 2003. Peroxisome-proliferator-activated receptor γ suppresses Wnt/β-catenin signalling during adipogenesis. Biochem. J. 376:607–13
    [Google Scholar]
  95. 95. 
    Mozzetta C, Tedesco FS. 2019. Challenging the “chromatin hypothesis” of cardiac laminopathies with LMNA mutant iPS cells. J. Cell Biol. 218:2826–28
    [Google Scholar]
  96. 96. 
    Muchir A, Shan J, Bonne G, Lehnart SE, Worman HJ 2009. Inhibition of extracellular signal-regulated kinase signaling to prevent cardiomyopathy caused by mutation in the gene encoding A-type lamins. Hum. Mol. Genet. 18:241–47
    [Google Scholar]
  97. 97. 
    Naetar N, Foisner R. 2009. Lamin complexes in the nuclear interior control progenitor cell proliferation and tissue homeostasis. Cell Cycle 8:1488–93
    [Google Scholar]
  98. 98. 
    Neumann S, Schneider M, Daugherty RL, Gottardi CJ, Eming SA et al. 2010. Nesprin-2 interacts with α-catenin and regulates Wnt signaling at the nuclear envelope. J. Biol. Chem. 285:34932–38
    [Google Scholar]
  99. 99. 
    Novelli G, Muchir A, Sangiuolo F, Helbling-Leclerc A, D'Apice MR et al. 2002. Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am. J. Hum. Genet. 71:426–31
    [Google Scholar]
  100. 100. 
    Olins AL, Zwerger M, Herrmann H, Zentgraf H, Simon AJ et al. 2008. The human granulocyte nucleus: unusual nuclear envelope and heterochromatin composition. Eur. J. Cell Biol. 87:279–90
    [Google Scholar]
  101. 101. 
    Orthwein A, Noordermeer SM, Wilson MD, Landry S, Enchev RI et al. 2015. A mechanism for the suppression of homologous recombination in G1 cells. Nature 528:422–26
    [Google Scholar]
  102. 102. 
    Padiath QS, Saigoh K, Schiffmann R, Asahara H, Yamada T et al. 2006. Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat. Genet. 38:1114–23
    [Google Scholar]
  103. 103. 
    Park JY, Javor ED, Cochran EK, DePaoli AM, Gorden P 2007. Long-term efficacy of leptin replacement in patients with Dunnigan-type familial partial lipodystrophy. Metabolism 56:508–16
    [Google Scholar]
  104. 104. 
    Pendas AM, Zhou Z, Cadinanos J, Freije JM, Wang J et al. 2002. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat. Genet. 31:94–99
    [Google Scholar]
  105. 105. 
    Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SWM, Solovei I et al. 2010. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell 38:603–13
    [Google Scholar]
  106. 106. 
    Perovanovic J, Dell'Orso S, Gnochi VF, Jaiswal JK, Sartorelli V et al. 2016. Laminopathies disrupt epigenomic developmental programs and cell fate. Sci. Transl. Med. 8:335ra58
    [Google Scholar]
  107. 107. 
    Peter M, Kitten GT, Lehner CF, Vorburger K, Bailer SM et al. 1989. Cloning and sequencing of cDNA clones encoding chicken lamins A and B1 and comparison of the primary structures of vertebrate A- and B-type lamins. J. Mol. Biol. 208:393–404
    [Google Scholar]
  108. 108. 
    Poleshko A, Mansfield KM, Burlingame CC, Andrake MD, Shah NR, Katz RA 2013. The human protein PRR14 tethers heterochromatin to the nuclear lamina during interphase and mitotic exit. Cell Rep 5:292–301
    [Google Scholar]
  109. 109. 
    Raab M, Gentili M, De Belly H, Thiam HR, Vargas P et al. 2016. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352:359–62
    [Google Scholar]
  110. 110. 
    Raharjo WH, Enarson P, Sullivan T, Stewart CL, Burke B 2001. Nuclear envelope defects associated with LMNA mutations cause dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy. J. Cell Sci. 114:4447–57
    [Google Scholar]
  111. 111. 
    Redwood AB, Perkins SM, Vanderwaal RP, Feng Z, Biehl KJ et al. 2011. A dual role for A-type lamins in DNA double-strand break repair. Cell Cycle 10:2549–60
    [Google Scholar]
  112. 112. 
    Robson MI, de las Heras JI, Czapiewski R, Lê Thành P, Booth DG et al. 2016. Tissue-specific gene repositioning by muscle nuclear membrane proteins enhances repression of critical developmental genes during myogenesis. Mol. Cell 62:834–47
    [Google Scholar]
  113. 113. 
    Rowat AC, Jaalouk DE, Zwerger M, Ung WL, Eydelnant IA et al. 2013. Nuclear envelope composition determines the ability of neutrophil-type cells to passage through micron-scale constrictions. J. Biol. Chem. 288:8610–18
    [Google Scholar]
  114. 114. 
    Ruiz S, Santos M, Segrelles C, Leis H, Jorcano JL et al. 2004. Unique and overlapping functions of pRb and p107 in the control of proliferation and differentiation in epidermis. Development 131:2737–48
    [Google Scholar]
  115. 115. 
    Salvarani N, Crasto S, Miragoli M, Bertero A, Paulis M et al. 2019. The K219T-lamin mutation induces conduction defects through epigenetic inhibition of SCN5A in human cardiac laminopathy. Nat. Commun. 10:2267
    [Google Scholar]
  116. 116. 
    Santiago-Fernandez O, Osorio FG, Quesada V, Rodriguez F, Basso S et al. 2019. Development of a CRISPR/Cas9-based therapy for Hutchinson-Gilford progeria syndrome. Nat. Med. 25:423–26
    [Google Scholar]
  117. 117. 
    Scharner J, Lu H-C, Fraternali F, Ellis JA, Zammit PS 2014. Mapping disease-related missense mutations in the immunoglobulin-like fold domain of lamin A/C reveals novel genotype-phenotype associations for laminopathies. Proteins 82:904–15
    [Google Scholar]
  118. 118. 
    Schwartz C, Fischer M, Mamchaoui K, Bigot A, Lok T et al. 2017. Lamins and nesprin-1 mediate inside-out mechanical coupling in muscle cell precursors through FHOD1. Sci. Rep. 7:1253
    [Google Scholar]
  119. 119. 
    Scully R, Chen J, Plug A, Xiao Y, Weaver D et al. 1997. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88:265–75
    [Google Scholar]
  120. 120. 
    Shimi T, Butin-Israeli V, Adam SA, Hamanaka RB, Goldman AE et al. 2011. The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev 25:2579–93
    [Google Scholar]
  121. 121. 
    Shimi T, Pfleghaar K, Kojima S, Pack CG, Solovei I et al. 2008. The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev 22:3409–21
    [Google Scholar]
  122. 122. 
    Sola-Carvajal A, Revêchon G, Helgadottir HT, Whisenant D, Hagblom R et al. 2019. Accumulation of progerin affects the symmetry of cell division and is associated with impaired Wnt signaling and the mislocalization of nuclear envelope proteins. J. Investig. Dermatol. 139:2272–80.e12
    [Google Scholar]
  123. 123. 
    Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S et al. 2013. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152:584–98
    [Google Scholar]
  124. 124. 
    Stewart CL, Burke B. 1987. Teratocarcinoma stem cells and early mouse embryos contain only a single major lamin polypeptide closely resembling lamin B. Cell 51:383–92
    [Google Scholar]
  125. 125. 
    Stewart CL, Roux KJ, Burke B 2007. Blurring the boundary: the nuclear envelope extends its reach. Science 318:1408–12
    [Google Scholar]
  126. 126. 
    Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N et al. 1999. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147:913–20
    [Google Scholar]
  127. 127. 
    Swartz RK, Rodriguez EC, King MC 2014. A role for nuclear envelope-bridging complexes in homology-directed repair. Mol. Biol. Cell 25:2461–71
    [Google Scholar]
  128. 128. 
    Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC et al. 2013. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104
    [Google Scholar]
  129. 129. 
    Tajik A, Zhang Y, Wei F, Sun J, Jia Q et al. 2016. Transcription upregulation via force-induced direct stretching of chromatin. Nat. Mater. 15:1287–96
    [Google Scholar]
  130. 130. 
    Thakar K, May CK, Rogers A, Carroll CW 2017. Opposing roles for distinct LINC complexes in regulation of the small GTPase RhoA. Mol. Biol. Cell 28:182–91
    [Google Scholar]
  131. 131. 
    Towbin BD, González-Aguilera C, Sack R, Gaidatzis D, Kalck V et al. 2012. Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150:934–47
    [Google Scholar]
  132. 132. 
    Turgay Y, Eibauer M, Goldman AE, Shimi T, Khayat M et al. 2017. The molecular architecture of lamins in somatic cells. Nature 543:261–64
    [Google Scholar]
  133. 133. 
    Uzer G, Bas G, Sen B, Xie Z, Birks S et al. 2018. Sun-mediated mechanical LINC between nucleus and cytoskeleton regulates βcatenin nuclear access. J. Biomech. 74:32–40
    [Google Scholar]
  134. 134. 
    Van Berlo JH, Voncken JW, Kubben N, Broers JLV, Duisters R et al. 2005. A-type lamins are essential for TGF-β1 induced PP2A to dephosphorylate transcription factors. Hum. Mol. Genet. 14:2839–49
    [Google Scholar]
  135. 135. 
    van Engelen BG, Muchir A, Hutchison CJ, van der Kooi AJ, Bonne G, Lammens M 2005. The lethal phenotype of a homozygous nonsense mutation in the lamin A/C gene. Neurology 64:374–76
    [Google Scholar]
  136. 136. 
    van Steensel B, Belmont AS 2017. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169:780–91
    [Google Scholar]
  137. 137. 
    Vergnes L, Peterfy M, Bergo MO, Young SG, Reue K 2004. Lamin B1 is required for mouse development and nuclear integrity. PNAS 101:10428–33
    [Google Scholar]
  138. 138. 
    Vidak S, Kubben N, Dechat T, Foisner R 2015. Proliferation of progeria cells is enhanced by lamina-associated polypeptide 2α (LAP2α) through expression of extracellular matrix proteins. Genes Dev 29:2022–36
    [Google Scholar]
  139. 139. 
    Vorburger K, Lehner CF, Kitten GT, Eppenberger HM, Nigg EA 1989. A second higher vertebrate B-type lamin: cDNA sequence determination and in vitro processing of chicken lamin B2. J. Mol. Biol. 208:405–15
    [Google Scholar]
  140. 140. 
    Wang AS, Kozlov SV, Stewart CL, Horn HF 2015. Tissue specific loss of A-type lamins in the gastrointestinal epithelium can enhance polyp size. Differentiation 89:11–21
    [Google Scholar]
  141. 141. 
    Wang X, Zabell A, Koh W, Tang WH 2017. Lamin A/C cardiomyopathies: current understanding and novel treatment strategies. Curr. Treat. Options Cardiovasc. Med. 19:21
    [Google Scholar]
  142. 142. 
    White RB, Bierinx AS, Gnocchi VF, Zammit PS 2010. Dynamics of muscle fibre growth during postnatal mouse development. BMC Dev. Biol. 10:21
    [Google Scholar]
  143. 143. 
    Worman HJ, Bonne G. 2007. “Laminopathies”: a wide spectrum of human diseases. Exp. Cell Res. 313:2121–33
    [Google Scholar]
  144. 144. 
    Wyman C, Kanaar R. 2006. DNA double-strand break repair: All's well that ends well. Annu. Rev. Genet. 40:363–83
    [Google Scholar]
  145. 145. 
    Xie W, Chojnowski A, Boudier T, Lim JS, Ahmed S et al. 2016. A-type lamins form distinct filamentous networks with differential nuclear pore complex associations. Curr. Biol. 26:2651–58
    [Google Scholar]
  146. 146. 
    Yang SH, Chang SY, Yin L, Tu Y, Hu Y et al. 2011. An absence of both lamin B1 and lamin B2 in keratinocytes has no effect on cell proliferation or the development of skin and hair. Hum. Mol. Genet. 20:3537–44
    [Google Scholar]
  147. 147. 
    Young SG, Jung HJ, Coffinier C, Fong LG 2012. Understanding the roles of nuclear A- and B-type lamins in brain development. J. Biol. Chem. 287:16103–10
    [Google Scholar]
  148. 148. 
    Young SG, Meta M, Yang SH, Fong LG 2006. Prelamin A farnesylation and progeroid syndromes. J. Biol. Chem. 281:39741–45
    [Google Scholar]
  149. 149. 
    Young SG, Yang SH, Davies BS, Jung HJ, Fong LG 2013. Targeting protein prenylation in progeria. Sci. Transl. Med. 5:171ps3
    [Google Scholar]
  150. 150. 
    Zullo JM, Demarco IA, Piqué-Regi R, Gaffney DJ, Epstein CB et al. 2012. DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell 149:1474–87
    [Google Scholar]
/content/journals/10.1146/annurev-genom-121219-083616
Loading
/content/journals/10.1146/annurev-genom-121219-083616
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error