Skip to main content
Log in

Recombinant expression of sericin-cecropin fusion protein and its functional activity

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

Silk sericin is a natural polymer with potential utility in biomedical and biotechnological applications. Recombinantly expressed sericin ensures a source of pure protein with no contamination and with multiple properties when expressed as a fusion protein. Hence, the present paper aims to recombinantly express a functional silk sericin fusion protein.

Results

In order to develop a more effective sericin protein, we have attempted to recombinantly express a part of sericin sequence, which represents a highly conserved and internally repetitive unit of the sericin1 protein, and its fusion with cecropin B, a potent antimicrobial peptide. Both difficult-to-express proteins were expressed in Escherichia coli and purified by nickel-charged affinity resin. Further, functional assay demonstrated that both proteins were individually active against Gram-positive and negative bacteria, with enhanced bactericidal activity observed in sericin-cecropin B fusion protein.

Conclusions

To our knowledge, this is the first report not only on the recombinant expression of sericin as a fusion protein but also the bactericidal possibility of the 38-amino acid serine-rich motif of sericin protein. We also discuss the potential biomedical and biotechnological applications of this sericin hybrid protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aigner TB, DeSimone E, Scheibel T (2018) Biomedical applications of recombinant silk-based materials. Adv Mater 30:e1704636

    Article  Google Scholar 

  • Brady D, Grapputo A, Romolo O, Sandrelli F (2019) Insect cecropins, antimicrobial peptides with potential therapeutic applications. Int J Mol Sci 20:5862–5883

    Article  CAS  Google Scholar 

  • Campoccia D, Montanaro L, Speziale P, Arciola CR (2010) Antibiotic-loaded biomaterials and the risk for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use. Biomaterials 31:6363–6377

    Article  CAS  Google Scholar 

  • Couble P, Michaille JJ, Garel A, Couble ML, Prudhomme JC (1987) Developmental switches of sericin mRNA splicing in individual cells of Bombyx mori silk gland. Dev Biol 124:431–440

    Article  CAS  Google Scholar 

  • Dinjaski N, Kaplan DL (2016) Recombinant protein blends: silk beyond natural design. Curr Opin Biotechnol 39:1–7

    Article  CAS  Google Scholar 

  • Doakhan S, Montazer M, Rashidi A, Moniri R, Moghadam MB (2013) Influence of sericin / TiO2 nanocomposite on cotton fabric: Part 1. Enhanced antibacterial effect. Carbohyd Polym 94:737–748

    Article  CAS  Google Scholar 

  • Dong Z, Guo K, Zhang X et al (2019) Identification of Bombyx mori sericin 4 protein as a new biological adhesive. Int J Biol Macromol 132:1121–1130

    Article  CAS  Google Scholar 

  • Franco AR, Kimmerling EP, Silva C, Rodrigues FJ, Leonor IB, Reis RL, Kaplan DL (2018) Silk-based antimicrobial polymers as a new platform to design drug-free materials to impede microbial infections. Macromol Biosci 18:e00262

    Article  Google Scholar 

  • Gamo T, Inokuchi T, Laufer H (1977) Polypeptides of fibroin and sericin secreted from the different sections of the silk gland in Bombyx mori. Insect Biochem 7:285–295

    Article  CAS  Google Scholar 

  • Garel A, Deleage G, Prudhomme JC (1997) Structure and organization of the Bombyx mori sericin 1 gene and of the sericins 1 deduced from the sequence of the ser 1B cDNA. Insect Biochem Mol Biol 27:469–477

    Article  CAS  Google Scholar 

  • Gazit E, Lee WJ, Brey BT, Shai Y (1994) Mode of action of the antibacterial cecropin B2: a spectrofluorometric study. Biochemistry 33:10681–10692

    Article  CAS  Google Scholar 

  • Gomes SC, Leonor IB, Mano JF, Reis RL, Kaplan DL (2011) Antimicrobial functionalized genetically engineered spider silk. Biomaterials 32:4255–4266

    Article  CAS  Google Scholar 

  • Huang J, Valluzzi R, Bini E, Vernaglia B, Kaplan DL (2003) Cloning, expression, and assembly of sericin-like protein. J Biol Chem 278:46117–46123

    Article  CAS  Google Scholar 

  • Kaur J, Rajkhowa R, Afrin T, Tsuzuki T, Wang X (2014) Facts and myths of antibacterial properties of silk. Biopolymers 101:237–245

    Article  CAS  Google Scholar 

  • Koley P, Sakurai M, Aono M (2016) Controlled fabrication of silk protein sericin mediated hierarchical hybrid flowers and their excellent adsorption capability of heavy metal ions of Pb(II), Cd(II) and Hg(II). ACS Appl Mater Interfaces 8:2380–2392

    Article  CAS  Google Scholar 

  • Kundu SC, Dash BC, Dash R, Kaplan DL (2008) Natural protective glue protein, sericin bioengineered by silkworms: potential for biomedical and biotechnological applications. Prog Poly Sci 33:998–1012

    Article  CAS  Google Scholar 

  • Kunz RI, Brancalhao RMC, Ribeiro LDFC, Natali MRM (2016) Silkworm Sericin: properties and biomedical applications. Biomed Res Int. https://doi.org/10.1155/2016/8175701

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwak HW, Kim Y, Yun NK, Lee KH (2014) Silk sericin microparticles as a biosorbent for hexavalent chromium ion. Macromol Res 22:788–795

    Article  CAS  Google Scholar 

  • Li Y (2011) Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr Purif 80:260–267

    Article  CAS  Google Scholar 

  • Michaille J, Couble P, Prudhomme J, Garel A (1986) A single gene produces multiple sericin messenger RNAs in the silk gland of Bombyx mori. Biochimie 68:1165–1173

    Article  CAS  Google Scholar 

  • Moore AJ, Devine DA, Bibby MC (1994) Preliminary experimental anticancer activity of cecropins. Pept Res 7:265–269

    CAS  PubMed  Google Scholar 

  • Okamoto H, Ishikawa E, Suzuki Y (1982) Structural analysis of sericin genes: homologies with fibroin gene in the 5’ flanking nucleotide sequences. J Biol chem 257:15192–15199

    CAS  PubMed  Google Scholar 

  • Rajendran R, Balakumar C, Sivakumar R, Amruta T, Devaki N (2012) Extraction and application of natural silk protein sericin from Bombyx mori as antimicrobial finish for cotton fabrics. J Text Inst 103:458–462

    Article  CAS  Google Scholar 

  • Saida F, Uzan M, Odaert B, Bontems F (2006) Expression of highly toxic genes in E. coli: special strategies and genetic tools. Curr Protein Pept Sci 7:47–56

    Article  CAS  Google Scholar 

  • Senakoon W, Nuchadomrong S, Sirimungkararat S, Senawong T, Kitikoon P (2009) Antibacterial action of eri (Samia ricini) sericin against Escherichia coli and Staphylococcus aureus. Asian J Food Agro Ind 2:S222–S228

    Google Scholar 

  • Seo MD, Won HS, Kim JH, Ochir TM, Lee BJ (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17:12276–12286

    Article  CAS  Google Scholar 

  • Takahashi M, Tsujimoto K, Yamada H, Takagi H (2003) The silk protein, sericin, protects against cell death caused by acute serum deprivation in insect cell culture. Biotech Lett 25:1805–1809

    Article  CAS  Google Scholar 

  • Takahashi M, Tsujimoto K, Kato Y, Yamada H, Takagi H, Nakamori S (2005) A sericin-derived peptide protects Sf9 insect cells from death caused by acute serum deprivation. Biotech Lett 27:893–897

    Article  CAS  Google Scholar 

  • Takasu Y, Yamada H, Tsubouchi K (2002) Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori. Biosci Biotechnol Biochem 66:2715–2718

    Article  CAS  Google Scholar 

  • Takasu Y, Yamada H, Tamura T, Sezutsu H, Mita K, Tsubouchi K (2007) Identification and characterization of a novel sericin gene expressed in the anterior middle silk gland of the silkworm Bombyx mori. Insect Biochem Mol Biol 37:1234–1240

    Article  CAS  Google Scholar 

  • Terada S, Sasaki M, Yanagihara K, Yamada H (2005) Preparation of silk protein sericin as mitogenic factor for better mammalian cell culture. J Biosci Bioeng 100:667–671

    Article  CAS  Google Scholar 

  • Tripoulas NA, Samols D (1986) Developmental and hormonal regulation of sericin RNA in the silkworm, Bombyx mori. Dev Biol 336:328–336

    Article  Google Scholar 

  • Tsujimoto K, Takagi H, Takahashi M, Yamada H, Nakamori S (2001) Cryoprotective effect of the serine-rich repetitive sequence in silk protein sericin. J Biochem 129:979–986

    Article  CAS  Google Scholar 

  • Venu S, Jothimani P, Krishamurthy SV, Shanmugam R (2019) Bioaccumulation of heavy metals in mulberry sericulture: Review. Int J Chem Stud 7:901–905

    CAS  Google Scholar 

  • Xue R, Liu Y, Zhang Q, Liang C, Qin H, Liu P, Wang K, Zhang X, Chen L, Wei Y (2016) Shape changes and interaction mechanism of Escherichia coli cells treated with sericin and use of a sericin-based hydrogel for wound healing. Appl Environ Microbiol 82:4663–4672

    Article  CAS  Google Scholar 

  • Zhao R, Li X, Sun B, Zhang Y, Tang Z, Chen X, Wang C (2014) Electrospun chitosan/sericin composite nanofibers with antibacterial property as potential wound dressings. Int J Biol Macromol 68:92–97

    Article  CAS  Google Scholar 

  • Zhou L, Chen X, Shao Z, Huang Y, Knight DP (2005) Effect of metallic ions on silk formation in the mulberry silkworm, Bombyx mori. J Phys Chem B 109:1637–16945

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant (No. AIT3538) to RG from Central Silk Board (CSB), Bengaluru, India. DST, CM, and SR are thankful to CSB for providing research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravikumar Gopalapillai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, D.S., Manoharan, C., Rasalkar, S. et al. Recombinant expression of sericin-cecropin fusion protein and its functional activity. Biotechnol Lett 42, 1673–1682 (2020). https://doi.org/10.1007/s10529-020-02911-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-020-02911-3

Keywords

Navigation