Skip to main content
Log in

Age-related compositional changes and correlations of gut microbiome, serum metabolome, and immune factor in rats

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Aging is a complex physiological process associated with degenerative disorder of metabolism and immune function, which contributes to the occurrence of senile diseases. The gut microbiota affects systemic inflammation in aging processes probably through metabolism, but their relationship is still unclear. In this study, 16S-rRNA-sequencing technology, gas chromatography-time-of-flight mass spectrometry (GC-TOFMS)–based metabolic profiling, and immune factor analysis combined with advanced differential and association analysis were employed to investigate the correlation between the microbiome, metabolome, and immune factors in male Wistar rats across lifespan. Our findings showed significant changes in the ileum microbiome and serum metabolome compositions across aging process. A two-level strategy was applied to demonstrate that key metabolites associated with age such as 4-hydroxyproline, proline, and lysine were clustered together and positively correlated with beneficial microbes including Bifidobacterium, Lactobacillus, and Akkermansia. Function analysis explored association between serum metabolite class and specific gut bacteria’s metabolism pathways. Further correlation analysis on all the alteration patterns provided an interaction network of main immune factors such as IL-10, IgA, IgM, and IgG with key gut bacteria and serum metabolites. This study offers new insights into the relationship between immune factors, serum metabolome, and the gut microbiome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 4
Fig. 6

Similar content being viewed by others

References

  • Bárcena C, Valdés-Mas R, Mayoral P, Garabaya C, Durand S, Rodríguez F, et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat Med. 2019;25:1234–42.

    PubMed  Google Scholar 

  • Biancheri P, Watson AJM. The relative contributions of the gut microbiome, host genetics, and environment to cytokine responses to microbial stimulation. Gastroenterology. 2017;152:2068–70.

    PubMed  Google Scholar 

  • Biragyn A, Ferrucci L. Gut dysbiosis: a potential link between increased cancer risk in ageing and inflammaging. Lancet Oncol. 2018;19:e295–304.

    PubMed  PubMed Central  Google Scholar 

  • Bolyen E et al. (2018) QIIME 2: reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Preprints,

  • Buford TW. (Dis) Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome. 2017;5:80.

    PubMed  PubMed Central  Google Scholar 

  • Butler RN, Miller RA, Perry D, Carnes BA, Williams TF, Cassel C, et al. New model of health promotion and disease prevention for the 21st century. Bmj. 2008;337:a399.

    PubMed  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castaneda-Delgado JE, et al. Differences in cytokine production during aging and its relationship with antimicrobial peptides production. Immunol Investig. 2017;46:48–58.

    CAS  Google Scholar 

  • Chen T, Ni Y, Ma X, Bao Y, Liu J, Huang F, et al. Branched-chain and aromatic amino acid profiles and diabetes risk in Chinese populations. Sci Rep. 2016;6:20594.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, You Y, Xie G, Zheng X, Zhao A, Liu J, et al. Strategy for an association study of the intestinal microbiome and brain metabolome across the lifespan of rats. Anal Chem. 2018;90:2475–83.

    CAS  PubMed  Google Scholar 

  • Chen Y, Li Z, Tye KD, Luo H, Tang X, Liao Y, et al. Probiotics supplementation during human pregnancy affects the gut microbiome and immune status. Front Cell Infect Microbiol. 2019;9:254.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dagdeviren S, Young Jung D, Friedline RH, Noh HL, Kim JH, Patel PR, et al. IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle. FASEB J. 2017;31:701–10.

    CAS  PubMed  Google Scholar 

  • De Simone R, Vissicchio F, Mingarelli C, De Nuccio C, Visentin S, Ajmone-Cat MA, et al. Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochim Biophys Acta. 2013;1832:650–9.

    PubMed  Google Scholar 

  • DeSantis TZ, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dessì A, Briana D, Corbu S, Gavrili S, Cesare Marincola F, Georgantzi S, et al. Metabolomics of breast milk: the importance of phenotypes. Metabolites. 2018;8:79.

    PubMed Central  Google Scholar 

  • Dodd D, Spitzer MH, van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;551:648–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donaldson G et al. (2018) Gut microbiota utilize immunoglobulin A for mucosal colonization. Science (80- ) 360:795–800.

  • Douglas GM et al. (2019) PICRUSt2: an improved and extensible approach for metagenome inference. BioRxiv:672295.

  • Ferrario C, et al. Exploring amino acid auxotrophy in Bifidobacterium bifidum PRL2010. Front Microbiol. 2015;6:1331.

    PubMed  PubMed Central  Google Scholar 

  • Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15:505–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Firouzi S, Haghighatdoost F. The effects of prebiotic, probiotic, and synbiotic supplementation on blood parameters of renal function: a systematic review and meta-analysis of clinical trials. Nutrition. 2018;51:104–13.

    PubMed  Google Scholar 

  • Gil-Campos M, del Carmen R-TM, Larque E, Linde J, Aguilera CM, Canete R, et al. Metabolic syndrome affects fatty acid composition of plasma lipids in obese prepubertal children. Lipids. 2008;43:723–32.

    CAS  PubMed  Google Scholar 

  • Gorjão R, Hirabara S, Cury-Boaventura M, de Lima T, Passos M, Levada-Pires A, et al. Signaling pathways involved in the effects of different fatty acids on interleukin-2 induced human lymphocyte proliferation. J Clin Cell Immunol. 2013;4:171.

    Google Scholar 

  • Greer RL, Dong X, Moraes ACF, Zielke RA, Fernandes GR, Peremyslova E, et al. Akkermansia muciniphila mediates negative effects of IFNγ on glucose metabolism. Nat Commun. 2016;7:13329.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grosserichter-Wagener C, Radjabzadeh D, van der Weide H, Smit KN, Kraaij R, Hays JP, et al. Differences in systemic IgA reactivity and circulating Th subsets in healthy volunteers with specific microbiota enterotypes. Front Immunol. 2019;10:341.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu L, Robinson RA. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases. Proteomics Clin Appl. 2016;10:1159–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hor YY, et al. Lactobacillus sp. improved microbiota and metabolite profiles of aging rats. Pharmacol Res. 2019;146:104312.

    PubMed  Google Scholar 

  • Hou Y, Wang X, Lei Z, Ping J, Liu, Ma Z, et al. Heat-stress-induced metabolic changes and altered male reproductive function. J Proteome Res. 2015;14:1495–503.

    CAS  PubMed  Google Scholar 

  • Huang YY, Martinez-Del Campo A, Balskus EP. Anaerobic 4-hydroxyproline utilization: discovery of a new glycyl radical enzyme in the human gut microbiome uncovers a widespread microbial metabolic activity. Gut Microbes. 2018;9:437–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jankord R, JEMIOLO B. Influence of physical activity on serum IL-6 and IL-10 levels in healthy older men. Med Sci Sports Exerc. 2004;36:960–4.

    CAS  PubMed  Google Scholar 

  • Kim OY, Lim HH, Lee MJ, Kim JY, Lee JH. Association of fatty acid composition in serum phospholipids with metabolic syndrome and arterial stiffness. Nutr Metab Cardiovasc Dis. 2013;23:366–74.

    CAS  PubMed  Google Scholar 

  • Korpela K, Dikareva E, Hanski E, Kolho K-L, De Vos WM, Salonen A. Cohort profile: Finnish Health and Early Life Microbiota (HELMi) longitudinal birth cohort. BMJ Open. 2019;9:e028500.

    PubMed  PubMed Central  Google Scholar 

  • Kurilshikov A, van den Munckhof ICL, Chen L, Bonder MJ, Schraa K, Rutten JHW, et al. Gut microbial associations to plasma metabolites linked to cardiovascular phenotypes and risk. Circ Res. 2019;124:1808–20.

    CAS  PubMed  Google Scholar 

  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.

    PubMed  PubMed Central  Google Scholar 

  • Magnusson M, Lewis GD, Ericson U, Orho-Melander M, Hedblad B, Engström G, et al. A diabetes-predictive amino acid score and future cardiovascular disease. Eur Heart J. 2013;34:1982–9.

    CAS  PubMed  Google Scholar 

  • Magri G, et al. Human secretory IgM emerges from plasma cells clonally related to gut memory B cells and targets highly diverse commensals. Immunity. 2017;47:118–134. e118.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maier TV, Lucio M, Lee LH, VerBerkmoes NC, Brislawn CJ, Bernhardt J, et al. Impact of dietary resistant starch on the human gut microbiome, metaproteome, and metabolome. MBio. 2017;8.

  • Malmuthuge N, Liang G, Griebel PJ, Guan LL. Taxonomic and functional compositions of the small intestinal microbiome in neonatal calves provide a framework for understanding early life gut health. Appl Environ Microbiol. 2019;85.

  • McCarty MF, DiNicolantonio JJ. An increased need for dietary cysteine in support of glutathione synthesis may underlie the increased risk for mortality associated with low protein intake in the elderly. Age (Dordr). 2015;37:96.

    Google Scholar 

  • Nepal M, Ma C, Xie G, Jia W, Fei P. Fanconi Anemia complementation group C protein in metabolic disorders. Aging (Albany NY). 2018;10:1506–22.

    CAS  PubMed Central  Google Scholar 

  • Nguyen TD, Prykhodko O, Fak Hallenius F, Nyman M. Monovalerin and trivalerin increase brain acetic acid, decrease liver succinic acid, and alter gut microbiota in rats fed high-fat diets. Eur J Nutr. 2019;58:1545–60.

    CAS  PubMed  Google Scholar 

  • O'Hara E, Kelly A, McCabe MS, Kenny DA, Guan LL, Waters SM. Effect of a butyrate-fortified milk replacer on gastrointestinal microbiota and products of fermentation in artificially reared dairy calves at weaning. Sci Rep. 2018;8:14901.

    PubMed  PubMed Central  Google Scholar 

  • Pan H, Guo R, Zhu J, Wang Q, Ju Y, Xie Y, et al. A gene catalogue of the Sprague-Dawley rat gut metagenome. Gigascience. 2018;7.

  • Pedersen HK, Forslund SK, Gudmundsdottir V, Petersen AØ, Hildebrand F, Hyötyläinen T, et al. A computational framework to integrate high-throughput ‘-omics’ datasets for the identification of potential mechanistic links. Nat Protoc. 2018;13:2781–800.

    CAS  PubMed  Google Scholar 

  • Perreault M, Zulyniak MA, Badoud F, Stephenson S, Badawi A, Buchholz A, et al. A distinct fatty acid profile underlies the reduced inflammatory state of metabolically healthy obese individuals. PLoS One. 2014;9:e88539.

    PubMed  PubMed Central  Google Scholar 

  • Plovier H, Everard A, Druart C, Depommier C, van Hul M, Geurts L, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23:107–13.

    CAS  PubMed  Google Scholar 

  • Ray A, Basu S, Gharaibeh RZ, Cook LC, Kumar R, Lefkowitz EJ, et al. Gut microbial dysbiosis due to helicobacter drives an increase in marginal zone B cells in the absence of IL-10 signaling in macrophages. J Immunol. 2015;195:3071–85.

    CAS  PubMed  Google Scholar 

  • Rijkers GT, Niers L, Stasse-Wolthuis M, Rombouts FM (2010) Nutrition, the infant and the immune system. In: Dietary Components and Immune Function. Springer, pp 3–23.

  • Robertson RC, Seira Oriach C, Murphy K, Moloney GM, Cryan JF, Dinan TG, et al. Deficiency of essential dietary n-3 PUFA disrupts the caecal microbiome and metabolome in mice. Br J Nutr. 2017;118:959–70.

    CAS  PubMed  Google Scholar 

  • Sansoni P, Vescovini R, Fagnoni F, Biasini C, Zanni F, Zanlari L, et al. The immune system in extreme longevity. Exp Gerontol. 2008;43:61–5.

    CAS  PubMed  Google Scholar 

  • Singh H, Torralba MG, Moncera KJ, DiLello L, Petrini J, Nelson KE, Pieper R (2019) Gastro-intestinal and oral microbiome signatures associated with healthy aging. Geroscience.

  • Steffen BT, Steffen LM, Tracy R, Siscovick D, Hanson NQ, Nettleton J, et al. Obesity modifies the association between plasma phospholipid polyunsaturated fatty acids and markers of inflammation: the Multi-Ethnic Study of Atherosclerosis. Int J Obes. 2012;36:797–804.

    CAS  Google Scholar 

  • Ticinesi A, Nouvenne A, Tana C, Prati B, Meschi T. Gut microbiota and microbiota-related metabolites as possible biomarkers of cognitive aging. Adv Exp Med Biol. 2019;1178:129–54.

    CAS  PubMed  Google Scholar 

  • Tran TT, et al. Prebiotic supplementation in frail older people affects specific gut microbiota taxa but not global diversity. Microbiome. 2019;7:39.

    PubMed  PubMed Central  Google Scholar 

  • Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17:448–53.

    PubMed  PubMed Central  Google Scholar 

  • Wijsman CA, Rozing MP, Streefland TCM, le Cessie S, Mooijaart SP, Slagboom PE, et al. Familial longevity is marked by enhanced insulin sensitivity. Aging Cell. 2011;10:114–21.

    CAS  PubMed  Google Scholar 

  • Yu W, et al. One-carbon metabolism supports S-adenosylmethionine and histone methylation to drive inflammatory macrophages. Mol Cell. 2019;75:1147–1160.e1145.

    CAS  PubMed  Google Scholar 

  • Zhang Z, Wang X, Wang J, Jia Z, Liu Y, Xie X, et al. Metabonomics approach to assessing the metabolism variation and endoexogenous metabolic interaction of ginsenosides in cold stress rats. J Proteome Res. 2016;15:1842–52.

    CAS  PubMed  Google Scholar 

  • Zheng X, Chen T, Zhao A, Wang X, Xie G, Huang F, et al. The brain metabolome of male rats across the lifespan. Sci Rep. 2016;6:24125.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by Medicine and Engineering Interdisciplinary Research Fund of Shanghai Jiao TongUniversity (YG2016MS40, YG2017MS28), the National Nature Science Foundation of China (30901997 and 31972935), and the National Basic Research Program of China (2012CB910102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianlu Chen, Wei Jia or Xiaoyan Wang.

Ethics declarations

All experiments were carried out strictly in accordance with recommendations on the National Institutes of Health’s Guide for Care and Use of Laboratory Animals. The experimental program was approved by the Center for Laboratory Animals of Shanghai Jiao Tong University.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2007 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yang, Y., Su, J. et al. Age-related compositional changes and correlations of gut microbiome, serum metabolome, and immune factor in rats. GeroScience 43, 709–725 (2021). https://doi.org/10.1007/s11357-020-00188-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-020-00188-y

Keywords

Navigation