Skip to main content
Log in

Effects of Environmental Factors on Nitrate-DAMO Activity

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Nitrate-denitrifying anaerobic methane oxidation (Nitrate-DAMO) process is a novel bioprocess which couples anaerobic oxidation of methane (AOM) with nitrite/nitrate reduction. In this study, one Nitrate-DAMO culture contains both DAMO bacteria (62.2%) and DAMO archaea (26.5%). The environmental conditions, temperature, pH, and dissolved oxygen were found to affect Nitrate-DAMO activity significantly. When temperature was below 35 °C, Nitrate-DAMO reaction rate dropped as temperature decreased, and when temperature was above 35 °C, Nitrate-DAMO reaction rate decreased as temperature rose; Nitrate-DAMO reaction rate reached maximum at 35 °C. When pH was below 6.5, Nitrate-DAMO reaction rate decreased with the decrease of pH, and when pH was above 7.5, Nitrate-DAMO reaction rate decreased as pH rose; the maximum Nitrate-DAMO reaction rate appeared at both pH 6.5 and 7.5. Nitrate-DAMO activity was inversely proportional to dissolved oxygen concentration, which meant the existence of dissolved oxygen inhibited Nitrate-DAMO process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allegue, T., Arias, A., Fernandez-Gonzalez, N., Omil, F., & Garrido, J. M. (2018). Enrichment of nitrite-dependent anaerobic methane oxidizing bacteria in a membrane bioreactor. Chemical Engineering Journal, 347, 721–730.

    CAS  Google Scholar 

  • APHA. (1998). Standard methods for examination of water and wastewater, 20th ed. American Public Health Association, American Water Works Association, Water Pollution Control Federation, Washington, DC.

  • Chen, J., & Gu, J. D. (2017). Faunal burrows alter the diversity, abundance, and structure of AOA, AOB, anammox and n-Damo communities in coastal mangrove sediments. Microbial Ecology, 74(1), 140–156.

    CAS  Google Scholar 

  • Chen, J., Zhou, Z. C., & Gu, J. D. (2014). Occurrence and diversity of nitrite-dependent anaerobic methane oxidation bacteria in the sediments of the South China Sea revealed by amplification of both 16S rRNA and pmoA genes. Applied Microbiology and Biotechnology, 98(12), 5685–5696.

    CAS  Google Scholar 

  • Chen, S., Chen, J., Chang, S., Yi, H., Huang, D., Xie, S., & Guo, Q. (2018). Aerobic and anaerobic methanotrophic communities in urban landscape wetland. Applied Microbiology and Biotechnology, 102(1), 433–445.

    CAS  Google Scholar 

  • Costa, R. B., Okada, D. Y., Delforno, T. P., & Foresti, E. (2019). Methane-oxidizing archaea, aerobic methanotrophs and nitrifiers coexist with methane as the sole carbon source. International Biodeterioration & Biodegradation, 138, 57–62.

    CAS  Google Scholar 

  • Deutzmann, J. S., & Schink, B. (2011). Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Applied and Environmental Microbiology, 77(13), 4429–4436.

    CAS  Google Scholar 

  • Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M., Schreiber, F., Dutilh, B. E., Zedelius, J., de Beer, D., Gloerich, J., Wessels, H. J., van Alen, T., Luesken, F., Wu, M. L., van de Pas-Schoonen, K. T., Op den Camp, H. J., Janssen-Megens, E. M., Francoijs, K. J., Stunnenberg, H., Weissenbach, J., Jetten, M. S., & Strous, M. (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464(7288), 543–548.

    CAS  Google Scholar 

  • Ettwig, K. F., Shima, S., van de Pas-Schoonen, K. T., Kahnt, J., Medema, M. H., Op den Camp, H. J., Jetten, M. S., & Strous, M. (2008). Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environmental Microbiology, 10(11), 3164–3173.

    CAS  Google Scholar 

  • Ettwig, K. F., van Alen, T., van de Pas-Schoonen, K. T., et al. (2009). Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Applied and Environmental Microbiology, 75(11), 3656–3662.

    CAS  Google Scholar 

  • Duan, H., Wang, Q. L., Erler, D. V., Ye, L., & Yuan, Z. G. (2018). Effects of free nitrous acid treatment conditions on the nitrite pathway perfor-mance in mainstream wastewater treatment. Science of the Total Environment, 644, 360–370.

    CAS  Google Scholar 

  • Fu, L., Ding, J., Lu, Y. Z., Ding, Z. W., & Zeng, R. J. (2017). Nitrogen source effects on the denitrifying anaerobic methane oxidation culture and anaerobic ammonium oxidation bacteria enrichment process. Applied Microbiology and Biotechnology, 101(9), 3895–3906.

    CAS  Google Scholar 

  • Fu, L., Zhang, F., Bai, Y. N., Lu, Y. Z., Ding, J., Zhou, D., Liu, Y., & Zeng, R. J. (2019). Mass transfer affects reactor performance, microbial morphology, and community succession in the methane-dependent denitrification and anaerobic ammonium oxidation co-culture. Science of the Total Environment, 651(Pt 1), 291–297.

    CAS  Google Scholar 

  • Fux, C., Velten, S., Carozzi, V., et al. (2006). Efficient and stable nitritation and denitritation of ammonium-rich sludge dewatering liquor using an SBR with continuous loading. Water Research, 40(14), 2765–2775.

    CAS  Google Scholar 

  • Hatamoto, M., Kimura, M., Sato, T., Koizumi, M., Takahashi, M., Kawakami, S., Araki, N., & Yamaguchi, T. (2014). Enrichment of denitrifying methane-oxidizing microorganisms using up-flow continuous reactors and batch cultures. PLoS One, 9(12), e115823.

    Google Scholar 

  • He, Z., Cai, C., Geng, S., Lou, L., Xu, X., Zheng, P., & Hu, B. (2013). Mdodeling a nitrite-dependent anaerobic methane oxidation process: parameters identification and model evaluation. Bioresource Technology, 147, 315–320.

    CAS  Google Scholar 

  • He, Z., Cai, C., Shen, L., Lou, L., Zheng, P., Xu, X., & Hu, B. (2015a). Effect of inoculum sources on the enrichment of nitrite-dependent anaerobic methane-oxidizing bacteria. Applied Microbiology and Biotechnology, 99(2), 939–946.

    CAS  Google Scholar 

  • He, Z., Geng, S., Pan, Y., Cai, C., Wang, J., Wang, L., Liu, S., Zheng, P., Xu, X., & Hu, B. (2015b). Improvement of the trace metal composition of medium for nitrite-dependent anaerobic methane oxidation bacteria: iron(II) and copper(II) make a difference. Water Research, 85, 235–243.

    CAS  Google Scholar 

  • He, Z., Geng, S., Shen, L., Lou, L., Zheng, P., Xu, X., & Hu, B. (2015c). The short- and long-term effects of environmental conditions on anaerobic methane oxidation coupled to nitrite reduction. Water Research, 68, 554–562.

    CAS  Google Scholar 

  • He, Z., Geng, S., Wang, L., Cai, C., Wang, J., Liu, J., Zheng, P., Xu, X., & Hu, B. (2016). Improvement of mineral nutrient concentrations and pH control for the nitrite-dependent anaerobic methane oxidation process. Separation and Purification Technology, 162, 148–153.

    CAS  Google Scholar 

  • Hoor, A. T.-T. (1975). A new type of thiosulphate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp. Nov. Netherlands Journal of Sea Research, 9(3–4), 344–346.

    Google Scholar 

  • Hu, B., He, Z., Geng, S., Cai, C., Lou, L., Zheng, P., & Xu, X. (2014a). Cultivation of nitrite-dependent anaerobic methane-oxidizing bacteria: impact of reactor configuration. Applied Microbiology and Biotechnology, 98(18), 7983–7991.

    CAS  Google Scholar 

  • Hu, B. L., Shen, L. D., Lian, X., Zhu, Q., Liu, S., Huang, Q., He, Z. F., Geng, S., Cheng, D. Q., Lou, L. P., Xu, X. Y., Zheng, P., & He, Y. F. (2014b). Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. Proceedings of the National Academy of Sciences of the United States of America, 111(12), 4495–4500.

    CAS  Google Scholar 

  • Hu, S., Zeng, R. J., Burow, L. C., Lant, P., Keller, J., & Yuan, Z. (2009). Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Environmental Microbiology Reports, 1(5), 377–384.

    CAS  Google Scholar 

  • Hu, S., Zeng, R. J., Keller, J., Lant, P. A., & Yuan, Z. (2011). Effect of nitrate and nitrite on the selection of microorganisms in the denitrifying anaerobic methane oxidation process. Environmental Microbiology Reports, 3(3), 315–319.

    CAS  Google Scholar 

  • Hui, C., Guo, X., Sun, P., Lin, H., Zhang, Q., Liang, Y., & Zhao, Y.-H. (2017). Depth-specific distribution and diversity of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in upland-cropping soil under different fertilizer treatments. Applied Soil Ecology, 113, 117–126.

    Google Scholar 

  • Jenicek, P., Svehla, P., Zabranska, J., et al. (2004). Factors affecting nitrogen removal by nitritation/denitritation. Water Science and Technology, 49(5–6), 73–79.

    CAS  Google Scholar 

  • Kampman, C., Hendrickx, T. L. G., Luesken, F. A., van Alen, T. A., H. J. M. Op den Camp, Jetten, M. S. M., Zeeman, G., Buisman, C. J. N., & Temmink, H. (2012). Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment. Journal of Hazardous Materials, 227-228, 164–171.

    CAS  Google Scholar 

  • Liu, Y., Zhang, J., Zhao, L., Li, Y., Yang, Y., & Xie, S. (2015). Aerobic and nitrite-dependent methane-oxidizing microorganisms in sediments of freshwater lakes on the Yunnan Plateau. Applied Microbiology and Biotechnology, 99(5), 2371–2381.

    CAS  Google Scholar 

  • Long, Y., Guo, Q., Li, N., Li, B., Tong, T., & Xie, S. (2017a). Spatial change of reservoir nitrite-dependent methane-oxidizing microorganisms. Annals of Microbiology, 67(2), 165–174.

    CAS  Google Scholar 

  • Long, Y., Jiang, X., Guo, Q., Li, B., & Xie, S. (2017b). Sediment nitrite-dependent methane-oxidizing microorganisms temporally and spatially shift in the Dongjiang River. Applied Microbiology and Biotechnology, 101(1), 401–410.

    CAS  Google Scholar 

  • Lou, J., Wang, X., Li, J., & Han, J. (2018). The short- and long-term effects of nitrite on denitrifying anaerobic methane oxidation (DAMO) organisms. Environmental Science and Pollution Research, 26(5), 4777–4790.

    Google Scholar 

  • Luesken, F. A., Sanchez, J., van Alen, T. A., Sanabria, J., H. J. Op den Camp, Jetten, M. S., & Kartal, B. (2011). Simultaneous nitrite-dependent anaerobic methane and ammonium oxidation processes. Applied and Environmental Microbiology, 77(19), 6802–6807.

    CAS  Google Scholar 

  • Luesken, F. A., Wu, M. L., H. J. M. O. d. Camp, Keltjens, J. T., Stunnenberg, H., Francoijs, K.-J., Strous, M., & Jetten, M. S. M. (2012). Effect of oxygen on the anaerobic methanotroph ‘Candidatus Methylomirabilis oxyfera’: kinetic and transcriptional analysis. Environmental Microbiology, 14(4), 1024–1034.

    CAS  Google Scholar 

  • Luo, J. H., Chen, H., Yuan, Z., & Guo, J. (2018). Methane-supported nitrate removal from groundwater in a membrane biofilm reactor. Water Research, 132, 71–78.

    CAS  Google Scholar 

  • Ma, J., Yang, Q., Wang, S. Y., et al. (2010). Effect of free nitrous acid as inhibitors on nitrate reduction by a biological nutrient removal sludge. Journal of Hazardous Materials, 175(1–3), 518–523.

    CAS  Google Scholar 

  • Raghoebarsing, A. A., Pol, A., van de Pas-Schoonen, K. T., Smolders, A. J., Ettwig, K. F., Rijpstra, W. I., Schouten, S., Damste, J. S., H. J. Op den Camp, Jetten, M. S., & Strous, M. (2006). A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440(7086), 918–921.

    CAS  Google Scholar 

  • Rasigraf, O., Kool, D. M., Jetten, M. S., Sinninghe Damste, J. S., & Ettwig, K. F. (2014). Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera”. Applied and Environmental Microbiology, 80(8), 2451–2460.

    Google Scholar 

  • Rasigraf, O., Vogt, C., Richnow, H.-H., Jetten, M. S. M., & Ettwig, K. F. (2012). Carbon and hydrogen isotope fractionation during nitrite-dependent anaerobic methane oxidation by Methylomirabilis oxyfera. Geochimica et Cosmochimica Acta, 89, 256–264.

    CAS  Google Scholar 

  • Shen, L., Baolan, H., Shuai, L., Xiaoping, C., Zhanfei, H., Hongxing, R., Yan, L., Sha, G., Wei, W., Jingliang, T., Yiming, W., Liping, L., Xiangyang, X., & Ping, Z. (2016). Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments. Applied Microbiology and Biotechnology, 100(16), 7171–7180.

    CAS  Google Scholar 

  • Shen, L., Ouyang, L., Zhu, Y., & Trimmer, M. (2019). Spatial separation of anaerobic ammonium oxidation and nitrite-dependent anaerobic methane oxidation in permeable riverbeds. Environmental Microbiology. https://doi.org/10.1111/1462-2920.14554.

  • Shen, L. D., He, Z. F., Wu, H. S., & Gao, Z. Q. (2015). Nitrite-dependent anaerobic methane-oxidising bacteria: unique microorganisms with special properties. Current Microbiology, 70(4), 562–570.

    CAS  Google Scholar 

  • Shen, L. D., He, Z. F., Zhu, Q., Chen, D. Q., Lou, L. P., Xu, X. Y., Zheng, P., & Hu, B. L. (2012). Microbiology, ecology, and application of the nitrite-dependent anaerobic methane oxidation process. Frontiers in Microbiology, 3, 269.

    Google Scholar 

  • Shen, L. D., Wu, H. S., Liu, X., & Li, J. (2017). Cooccurrence and potential role of nitrite- and nitrate-dependent methanotrophs in freshwater marsh sediments. Water Research, 123, 162–172.

    CAS  Google Scholar 

  • Silva-Teira, A., Sánchez, A., Buntner, D., Rodríguez-Hernández, L., & Garrido, J. M. (2017). Removal of dissolved methane and nitrogen from anaerobically treated effluents at low temperature by MBR post-treatment. Chemical Engineering Journal, 326, 970–979.

    CAS  Google Scholar 

  • Sijbesma, W. F. H., Almeida, J. S., Reis, M. A. M., et al. (1996). Uncoupling effect of nitrite during denitrification by Pseudomonas fluorescens: an in vivo 31P-NMR study. Biotechnology and Bioengineering, 52(1), 176–182.

    CAS  Google Scholar 

  • Wang, S., Wu, Q., Lei, T., Liang, P., & Huang, X. (2016a). Enrichment of denitrifying methanotrophic bacteria from Taihu sediments by a membrane biofilm bioreactor at ambient temperature. Environmental Science and Pollution Research, 23(6), 5627–5634.

    CAS  Google Scholar 

  • Wang, Y., Huang, P., Ye, F., Jiang, Y., Song, L., Op den Camp, H. J., Zhu, G., & Wu, S. (2016b). Nitrite-dependent anaerobic methane oxidizing bacteria along the water level fluctuation zone of the Three Gorges Reservoir. Applied Microbiology and Biotechnology, 100(4), 1977–1986.

    CAS  Google Scholar 

  • Wang, Y., Zhu, G., Harhangi, H. R., Zhu, B., Jetten, M. S., Yin, C., & Op den Camp, H. J. (2012). Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in a paddy soil. FEMS Microbiology Letters, 336(2), 79–88.

    CAS  Google Scholar 

  • Wu, M. L., van Teeseling, M. C., Willems, M. J., van Donselaar, E. G., Klingl, A., Rachel, R., Geerts, W. J., Jetten, M. S., Strous, M., & van Niftrik, L. (2012b). Ultrastructure of the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera,” a novel polygon-shaped bacterium. Journal of Bacteriology, 194(2), 284–291.

    CAS  Google Scholar 

  • Wu, M. L., Ettwig, K. F., Jetten, M. S. M., et al. (2011). A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus ‘Methylomirabilis oxyfera’. Biochemical Society Transactions, 39(1), 243–248.

    CAS  Google Scholar 

  • Wu, M. L., van Alen, T. A., van Donselaar, E. G., et al. (2012a). Co-localization of particulate methane monooxygenase and cd (1) nitrite reduetase in the denitrifying methanotroph ‘Candidatus Methylomirabilisoxyfera’. FEMS Microbiology Letters, 334(1), 49–56.

    CAS  Google Scholar 

  • Xu, S., Lu, W., Mustafa, M. F., Caicedo, L. M., Guo, H., Fu, X., & Wang, H. (2017). Co-existence of anaerobic ammonium oxidation Bacteria and denitrifying anaerobic methane oxidation Bacteria in sewage sludge: community diversity and seasonal dynamics. Microbial Ecology, 74(4), 832–840.

    CAS  Google Scholar 

  • Xu, Y., Tong, T., Chen, J., Li, B., & Xie, S. (2018). Nitrite-dependent methane-oxidizing bacteria seasonally and spatially shift in a constructed wetland used for treating river water. Ecological Engineering, 110, 48–53.

    Google Scholar 

  • Yang, J., Jiang, H., Wu, G., Hou, W., Sun, Y., Lai, Z., & Dong, H. (2012). Co-occurrence of nitrite-dependent anaerobic methane oxidizing and anaerobic ammonia oxidizing bacteria in two Qinghai-Tibetan saline lakes. Frontiers of Earth Science, 6(4), 383–391.

    CAS  Google Scholar 

  • Yang, Y., Chen, J., Li, B., Liu, Y., & Xie, S. (2018). Anaerobic methane oxidation potential and bacteria in freshwater lakes: seasonal changes and the influence of trophic status. Systematic and Applied Microbiology, 41(6), 650–657.

    CAS  Google Scholar 

  • Zumft, W. G. (1997). Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews, 61(4), 533–616.

    CAS  Google Scholar 

  • Zhou, Y., Oehmen, A., Lim, M., Vadivelu, V., & Ng, W. J. (2011). The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants. Water Research, 45(15), 4672–4682.

    CAS  Google Scholar 

Download references

Funding

This research was financially supported by the Natural Science Foundation of Zhejiang Province, China (No. Y12E080076), and the central government especially supported funding for the development of local colleges and universities (No. S1701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juqing Lou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Practitioner Points

1) Temperature was a major factor that influenced Nitrate-DAMO process.

2) pH significantly affected the Nitrate-DAMO activity.

3) Dissolved oxygen was found to have strong inhibitory effect on Nitrate-DAMO microbes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, J., Lv, J. & Yang, D. Effects of Environmental Factors on Nitrate-DAMO Activity. Water Air Soil Pollut 231, 263 (2020). https://doi.org/10.1007/s11270-020-04640-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04640-9

Keywords

Navigation