Skip to main content
Log in

Synthesis, crystal structure and optical property of manganese (II) halides based on pyridine ionic liquids with high quantum yield

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two novel tetrahedral Mn (II) halide single-crystals [(C7H10N)2][MnCl4] (1) and [(C7H10N)2][MnBr4] (2), based on pyridine ionic liquids, have been successfully prepared. Centimeter-sized single crystal 2 was grown through bottom seed-solution temperature-lowering method, while the 1 was synthesized by solvent slow evaporation. Structure elucidation results indicate that the two crystals crystallize in the different space groups of the same monoclinic system. Significantly, the solid crystal 2 is possessed of superior luminescence properties than 1 at room temperature. Excited by ultraviolet light, the 1 and 2 emit intense green emission bands derived from the Mn (II) 4T(G) energy level. The fluorescent lifetimes are 384.43 and 187.83 μs, respectively, and quantum yields are 82% and 12%, respectively. Furthermore, under the excitation of X-ray, the 2 exhibits prominent X-ray fluorescence performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Balsamy S, Natarajan P, Vedalakshmi R, Muralidharan S (2014) Triboluminescence and vapor-induced phase transitions in the solids of methyltriphenylphosphonium tetrahalomanganate(II) complexes. Inorg Chem 53:6054–6059

    CAS  PubMed  Google Scholar 

  2. Dammak H, Feki H, Boughzala H, Abid Y (2015) Crystal structure, vibrational spectra and non-linear optical properties of diethylenetriammonium hexabromobismuthate: C4H16N3BiBr 6. Spectrochim Acta Part A 137:1235–1243

    CAS  Google Scholar 

  3. Kagan CR, Mitzi DB, Dimitrakopoulos CD (1999) Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286:945–947

    CAS  PubMed  Google Scholar 

  4. Lassoued MS, Lassoued A, Abdelbaky MSM, Ammar S, Gadri A, Ben Salah A, García-Granda S (2018) Synthesis, crystal structure, photoluminescence and dielectric properties of a new organic–inorganic compound: tetrachlorocadmate (II) 2.2′-bipyridinium. J Mater Sci-Mater Electron 29:5413–5426

    CAS  Google Scholar 

  5. Bentrup U, Harms K, Massa W, Pebler J (2000) Magnetic exchange interaction via HF2-bridges? structure and magnetism of pipzH2[MnF4(HF2)]. Solid State Sci 3:373–376

    Google Scholar 

  6. Xing GC, Mathews N, Sun SY, Lim SS, Lam YM, Grätzel M, Mhaisalkar S, Sum TC (2013) Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342:344–347

    CAS  PubMed  Google Scholar 

  7. Xu LJ, Sun CZ, Xiao H, Wu Y, Chen ZN (2017) Green-light-emitting diodes based on tetrabromide Manganese(II) complex through Solution Process. Adv Mater 29:1605739

    Google Scholar 

  8. Ye HY, Zhou QH, Niu XH, Liao WQ, Fu DW, Zhang Y, You YM, Wang JL, Chen ZN, Xiong RG (2015) High-temperature ferroelectricity and photoluminescence in a hybrid organic-inorganic compound: (3-Pyrrolinium)MnCl3. J Am Chem Soc 137:13148–13154

    CAS  PubMed  Google Scholar 

  9. Jüstel T, Nikol H, Ronda C (1998) New developments in the field of luminescent materials for lighting and displays. Angew Chem Int Ed 37:3084–3103

    Google Scholar 

  10. Stranks SD, Snaith HJ (2015) Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol 10:391–402

    CAS  PubMed  Google Scholar 

  11. Cotton FA, Daniels LM, Huang PL (2001) Correlation of structure and triboluminescence for tetrahedral Manganese(II) compounds. Inorg Chem 40:3576–3578

    CAS  PubMed  Google Scholar 

  12. Elfaleh N, Chouaib H, Kamoun S, Graça MPF (2015) AC conductivity analysis and dielectric relaxation behavior of (C6H20N3)BiBr 6·H2O. J Phys Org Chem 28:674–680

    CAS  Google Scholar 

  13. van’t Spijker JC, Dorenbos P, van Eijk CWE, Krämer K, Güde HU (1999) Scintillation and luminescence properties of Ce3+doped K2LaCl5. J Lumin 85:1–10

    Google Scholar 

  14. van Loef EVD, Dorenbos P, van Eijk CWE, Krämer KW, Güdel HU (2005) Scintillation properties of K2LaX5:Ce3+ (X = Cl, Br, I). Nucl Instrum Meth A 537:232–236

    Google Scholar 

  15. Cai XW, Zhao YY, Li H, Huang CP, Zhou Z (2018) Lead-free/rare earth-free green-light-emitting crystal based on organic-inorganic hybrid [(C10H16N)2][MnBr 4] with high emissive quantum yields and large crystal size. J Mol Struct 1161:262–266

    CAS  Google Scholar 

  16. Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154

    CAS  Google Scholar 

  17. Ding J, Yan QF (2017) Progress in organic-inorganic hybrid halide perovskite single crystal: growth techniques and applications. Sci China Mater 60:1063–1078

    CAS  Google Scholar 

  18. Hausmann D, Kuzmanoski A, Feldmann C (2016) MnBr 2/(18-crown-6) coordination complexes showing high room temperature luminescence and quantum yield. Dalton Trans 45:6541–6547

    CAS  PubMed  Google Scholar 

  19. Jiang CL, Zhong N, Luo CH, Lin HC, Zhang YY, Peng H, Duan CG (2017) (Diisopropylammonium)2MnBr 4: a multifunctional ferroelectric with efficient green-emission and excellent gas sensing property. Chem Commun 53:5954–5957

    CAS  Google Scholar 

  20. Wang ZX, Li PF, Liao WQ, Tang YY, Ye HY, Zhang Y (2016) Structure-triggered high quantum yield luminescence and switchable dielectric properties in Manganese(II) based hybrid compounds. Chem Asian J 11:981–985

    CAS  PubMed  Google Scholar 

  21. Wei YL, Jing J, Shi C, Ye HY, Wang ZX, Zhang Y (2018) High quantum yield and unusual photoluminescence behaviour in tetrahedral Manganese(II) based on hybrid compounds. Inorg Chem Front 5:2615–2619

    CAS  Google Scholar 

  22. Bai XW, Zhong HZ, Chen BK, Chen C, Han JB, Zeng RS, Zou BS (2018) Pyridine-modulated mn ion emission properties of C10H12N2MnBr 4 and C5H6NMnBr3 Single Crystals. J Phys Chem C 122:3130–3137

    CAS  Google Scholar 

  23. Wang XJ, Jia DD, Yen WM (2003) Mn2+ activated green, yellow, and red long persistent phosphors. J Lumin 102–103:34–37

    Google Scholar 

  24. Chen J, Zhang Q, Zheng FK, Liu ZF, Wang SH, Wu AQ, Guo GC (2015) Intense photo and triboluminescence of three tetrahedral Manganese(II) dihalides with chelating bidentate phosphine oxide ligand. Dalton Trans 44:3289–3294

    CAS  PubMed  Google Scholar 

  25. Zhang Y, Liao WQ, Fu DW, Ye HY, Chen ZN, Xiong RG (2015) Highly efficient red-light emission in an organic-inorganic hybrid ferroelectric: (Pyrrolidinium)MnCl3. J Am Chem Soc 137:4928–4931

    CAS  PubMed  Google Scholar 

  26. Zhang Y, Liao WQ, Fu DW, Ye HY, Liu CM, Chen ZN, Xiong RG (2015) The first organic-inorganic hybrid luminescent multiferroic: (Pyrrolidinium)MnBr 3. Adv Mater 27:3942–3946

    CAS  PubMed  Google Scholar 

  27. Li HR, Liu P, Shao HF, Wang Y, Zheng YX, Sun Z, Chen YH (2009) Green synthesis of luminescent soft materials derived from task-specific ionic liquid for solubilizing lanthanide oxides and organic ligand. J Mater Chem 19:5533–5540

    CAS  Google Scholar 

  28. Li HR, Shao HF, Wang YG, Qin DS, Liu BY, Zhang WJ, Yan WD (2008) Soft material with intense photoluminescence obtained by dissolving Eu2O3 and organic ligand into a task-specific ionic liquid. Chem Commun 41:5209–5211

    Google Scholar 

  29. Yi SJ, Wang J, Feng ZY, Chen X (2017) “Rigid” luminescent soft materials: Europium-containing lyotropic liquid crystals based on polyoxyethylene phytosterols andionic liquids. J Phys Chem B 121:9302–9310

    CAS  PubMed  Google Scholar 

  30. Yi SJ, Wang J, Chen X (2015) Enhanced energy transfer efficiency and stability of europium β-diketonate complex in ionic liquid-based lyotropic liquid crystals. Phys Chem Chem Phys 17:20322–20330

    CAS  PubMed  Google Scholar 

  31. Tang SF, Babai A, Mudring AV (2008) Europium-based ionic liquids as luminescent soft materials. Angew Chem Int Ed 47:7631–7634

    CAS  Google Scholar 

  32. Sheldrick GM (1997) SHELXS-97, Program for Crystal Structure Solution. University of Göttingen, Göttingen

    Google Scholar 

  33. Sheldrick GM (1997) SHELXL-97, Program for Crystal Structure Refinement. University of Göttingen, Göttingen

    Google Scholar 

  34. Birch DJS, Hungerford G, Nadolski B, Imhof RE, Dutch AD (1988) Time-correlated single-photon counting fluorescence decay studies at 930 nm using spark source excitation. J Phys E: Sci Instrum 21:857–862

    CAS  Google Scholar 

  35. Sun TG, Liang F, Zhang XY, Tu H, Lin ZS, Zhang GC, Wu YC (2017) Growth, structure, optical and thermal properties of three new organic–inorganic hybrid crystals: (C2H7N4S)3BiCl6H2O, (C2H7N4S)2BiBr 5, and (C2H5N4S)2BiI5. Polyhedron 127:478–488

    CAS  Google Scholar 

  36. Pitula S, Mudring AV (2010) Synthesis, structure, and physico-optical properties of Manganate(II)-based ionic liquids. Chem Eur J 16:3355–3365

    CAS  PubMed  Google Scholar 

  37. Jiang CL, Fu HM, Han Y, Li D, Lin HC, Li B, Meng XJ, Peng H, Chu JH (2019) Tuning the crystal structure and luminescence of pyrrolidinium manganese halides via halide ions. Cryst Res Technol 54:1800236

    Google Scholar 

  38. Cotton FA, Goodgame DML, Goodgame M (1962) Absorption spectra and electronic structures of some tetrahedral Manganese(II) complexes. J Am Chem Soc 84:167–172

    CAS  Google Scholar 

  39. Ridley JE, Zerner MC (1976) Triplet states via intermediate neglect of differential overlap: benzene, pyridine and the diazines. Theor China Acta (Bed) 42:223–236

    CAS  Google Scholar 

  40. Steemers FJ, Verboom W, Reinhoudt DN, van der Tol EB, Verhoeven JW (1995) New sensitizer-modified calix[4]arenes enabling near-uv excitation of complexed luminescent lanthanide ions. J Am Chem Soc 117:9408–9414

    CAS  Google Scholar 

  41. Doering JP, Moore JH (1972) Observation of a singlet-triplet transition in gas phase pyridine by ion and electron impact. J Chem Phys 56:2176–2178

    CAS  Google Scholar 

  42. Cotton FA (1961) The theory of transition-metal ions. J Am Chem Soc 83:4682

    Google Scholar 

  43. Berezin AS, Samsonenko DG, Brel VK, Artem’eva AV (2018) “Two-in-one” organic-inorganic hybrid Mn II complexes exhibiting dual-emissive phosphorescence. Dalton Trans 47:7306–7315

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Grant No. 61775108 and 11475242). The authors gratefully acknowledge the teacher Xu Wei and his graduate student for their support on the crystal structure testing and analysis. The authors also thank the reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shangke Pan or Jianguo Pan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 531 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Li, L., Li, Q. et al. Synthesis, crystal structure and optical property of manganese (II) halides based on pyridine ionic liquids with high quantum yield. Transit Met Chem 45, 413–421 (2020). https://doi.org/10.1007/s11243-020-00393-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-020-00393-w

Navigation