Skip to main content

Advertisement

Log in

Evolution and assessment of urban heat island between the years 1998 and 2016: case study of the cities Bratislava and Trnava in western Slovakia

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The paper concerns research on urban heat islands (UHIs) and presents case studies of two Slovak cities of different sizes: the capital, Bratislava, and the regional centre, Trnava. The model MUKLIMO_3 was applied to the UHI modelling and a heat wave that occurred between 15 and 23 August 2018 was chosen. Land cover/land use (LC/LU) classes based on the local climate zone (LCZ) concept were used as input for the modelling. The model was validated by data taken from five stations in Bratislava and two in Trnava, and a good rate of agreement between the modelled and measured data was statistically proven. Manifestations of UHI were studied during the whole of the mentioned period by summing the hours when threshold temperature values exceeded 25 and 30 °C. The results for Bratislava show greater variability related to the size of the city and terrain dissection compared with Trnava, which is smaller and situated in a flat terrain. A single representative day, that is, 20 August 2018, was chosen, for which UHI was modelled with three inputs of LC/LU classes: situation in 1998, 2007, and 2016 in order to assess the effect of change of LC/LU classes on the distribution of temperatures. Spatial manifestation of UHI was assessed in the frame of LC/LU classes for 2016 at 12:00, 18:00, and 24:00 in Central European Summer Time. The greatest heat load was modelled in densely built-up LC/LU classes, while forest areas were coolest. In Bratislava, due to a combination of a dissected terrain and UHI, great variability was modelled, with maximum temperature differences of up to 12 °C and, in the territory with homogeneous elevation, up to 6 °C. The UHI field in Trnava is less variable, with modelled temperature differences of up to 3 °C. A comparison of individual time horizons proved the effect of the urbanization process on the change of air temperature by several tenths of a degree Celsius on average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alcoforado MJ, Andrade H (2006) Nocturnal urban heat island in Lisbon (Portugal): main features and modelling attempts. Theor Appl Climatol 84(1–3):151–159

    Google Scholar 

  • Balchin WGV, Pye EM (1947) A micro-climatological investigation of Bath and the surrounding district. Q J R Meteorol Soc 73:297–323

    Google Scholar 

  • Bokwa A, Dobrovolný P, Gál T, Geletič J, Gulyás A, Hajto MJ, Holec J, Hollósi B, Kielar R, Lehnert M, Skarbit N, Šťastný P (2018) Urban climate in Central European cities and global climate change. Acta Climatol 51-52:7–35

    Google Scholar 

  • Bokwa A, Geletič J, Lehnert M, Žuvela-Aloise M, Hollósi B, Gál T, Skarbit N, Dobrovolný P, Hajto MJ, Kielar R, Walawender JP, Šťastný P, Holec J, Ostapowicz K, Burianová J, Garaj M (2019) Heat load assessment in Central European cities using an urban climate model and observational monitoring data. Energy Build 201:53–69

    Google Scholar 

  • Brousse O, Martilli A, Foley M, Mills G, Bechtel B (2016) WUDAPT, an efficient land use producing data tool for mesoscale models? Integration of urban LCZ in WRF over Madrid. Urban Clim 17:116–134

    Google Scholar 

  • Chandler TJ (1965) The climate of London. Hutchinson & Co., London

    Google Scholar 

  • Corburn J (2009) Cities, climate change and urban heat island mitigation: localising global environmental science. Urban Stud 46(2):413–427

    Google Scholar 

  • De Ridder K, Lauweat D, Maiheu B (2015) UrbClim – a fast urban boundary layer climate model. Urban Clim 12:21–48

    Google Scholar 

  • Dobrovolný P, Krahula L (2015) The spatial variability of air temperature and nocturnal urban heat island intensity in the city of Brno, Czech Republic. Moravian Geograph Rep 23(3):8–16

    Google Scholar 

  • European Commission. (2012). Guidelines on best practice to limit, mitigate or compensate soil sealing. Commission Staff Working Document. Available at: https://ec.europa.eu/environment/soil/pdf/soil_sealing_guidelines_en.pdf. Accessed 1 March 2020

  • European Commission. (2013). An EU strategy on adaptation to climate change. Luxembourg: Office for Official Publications of the European Communities. Available at: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2013:0216:FIN:EN:PDF. Accessed 1 March 2020

  • EEA (European Environment Agency) (2013). GIO land High Resolution Layers – summary of product specification – latest version. Available at: https://land.copernicus.eu/user-corner/technical-library/gio-land-high-resolution-layers-hrls-2013-summary-of-product-specifications-1/view. Accessed 1 March 2020

  • Fabrizi R, Bonafoni S, Biondi R (2010) Satellite and ground-based sensors for the urban heat island analysis in the city of Rome. Remote Sens 2(5):1400–1415

    Google Scholar 

  • Fischer ME, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nature 3:398–403 (www.nature.com/naturegeoscience). Accessed 1 March 2020

  • Geletič J, Lehnert M, Dobrovolný P (2016) Modelled spatio-temporal variability of air temperature in an urban climate and its validation: a case study of Brno, Czech Republic. Hungarian Geograph Bull 65(2):169–180

    Google Scholar 

  • Geletič J, Lehnert M, Savič S, Miloševič D (2018) Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic. Sci Total Environ 624:385–395

    Google Scholar 

  • Giannaros TM, Melas D, Daglis IA, Keramitsoglou I, Kourtidis K (2013) Numerical study of the urban heat island over Athens (Greece) with the WRF model. Atmos Environ 73:103–111

    Google Scholar 

  • Giovannini L, Zardi D, de Franceschi M (2014) Effects of changes in observational sites position and surrounding urbanisation on the temperature time series of the city of Trento. Urban Clim 10:509–529

    Google Scholar 

  • Gross G (1989) Numerical simulation of the nocturnal flow systems in the Freiburg area for different topographies. Beiträge zur Physik der Atmosphäre 62:57–72

    Google Scholar 

  • Hart MA, Sailor DJ (2009) Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor Appl Climatol 95(3–4):397–406

    Google Scholar 

  • Jaffrain G, Sannier C, Feranec J (2016) Monitoring of urban fabric classes and their validation in selected European cities (Urban Atlas). In: Feranec J, Soukup T, Hazeu G, Jaffrain G (eds) European landscape dynamics: CORINE land cover data. CRC Press, Taylor & Francis Group, Boca Raton, pp 141–156

    Google Scholar 

  • Konček M (ed) (1979) Klíma a bioklíma Bratislavy. Veda, Bratislava

    Google Scholar 

  • Kopecká M, Rosina K (2014) Identifikácia zmien urbanizovanej krajiny na báze satelitných dát s veľmi vysokým rozlíšením (VHR): záujmové územie Trnava (Identification of changes in urbanized landscape based on VHR satellite data: study area Trnava; in Slovak). Geografický časopis 66(3):247–267

    Google Scholar 

  • Lapin M, Šťastný P, Turňa M, Čepčeková E (2016) High temperatures and heat waves in Slovakia. Meteorologický časopis 19:3–10

    Google Scholar 

  • Lauriola P (2016) Introduction. In: Musco F (ed) Counteracting urban heat Island effects in a global climate change scenario. Springer eBook, pp xlvii–liii

  • Lauwaet D, De Ridder K, Saeed S, Brisson E, Chatterjee F, Van Lipzig NPM, Maiheu B, Hooyberghs H (2016) Assessing the current and future urban heat island of Brussels. Urban Clim 15:1–15

    Google Scholar 

  • Majkowska A, Kolendowicz L, Pólrolniczak M, Hauke J, Czernecki B (2017) The urban heat island in the city of Poznan as derived from Landsat 5 TM. Theor Appl Climatol 128(3–4):769–783

    Google Scholar 

  • Maronga B, Gross G, Raasch S, Banzhaf S, Forkel R, Heldens W, Kanani-Sühring F, Matzakaris A, Mauder M, Pavlik D, Pfaffenrott J, Schubert S, Seckmeyer G, Sieker H, Winderlich K (2019) Development of a new urban climate model based on the model PALM-Project overview, planned work, and first achievements. Meteorol Z 28(2):105–119

    Google Scholar 

  • Molnár G, Gyöngyösi AZ, Gál T (2019) Integration of an LCZ-based classification into WRF to assess the intra-urban temperature pattern under a heatwave period in Szeged, Hungary. Theor Appl Climatol 138(1–2):1139–1158

    Google Scholar 

  • Morris CJG, Simmonds I (2000) Associations between varying magnitudes of the urban heat island and the synoptic climatology in Melbourne, Australia. Int J Climatol 20(15):1931–1954

    Google Scholar 

  • Morris CJG, Simmonds I, Plummer N (2001) Quantification of the influences of wind and cloud on the nocturnal urban heat island of a large city. J Appl Meteorol 40(2):169–182

    Google Scholar 

  • Pazúr R, Kopecká M, Feranec J (2015) Changes of artificial surfaces of Bratislava in 2006–2012 identified by the Urban Atlas data. In: Land use/cover changes in selected regions in the world, vol XI. Asahikawa, International Geographical Union Commission on Land Use/Cover Change: Hokkaido University of Education, pp 37–42

  • Oke TR (1973) City size and the urban heat island. Atmosph Environ (1967) 7(8):769–779

    Google Scholar 

  • Oke TR (1995) The heat island characteristics of the urban boundary layer. Characteristics, causes and effects. In: Cermak JE, Davenport AG, Plate EJ, Viegas DX (eds) Wind climate in cities. Kluwer Academic, Norwell, pp 81–107

    Google Scholar 

  • Oke TR (2004) Initial guidance to obtain representative meteorological observations at urban sites, instruments and methods of observation programme, IOM Report No. 81, WMO/TD No. 1250. World Meteorological Organization, Geneva

    Google Scholar 

  • Resler J, Krč P, Belda M, Juruš P, Benešová N, Lopata J, Vlček O, Damašková D, Eben K, Derbek P, Maronga B, Kanani-Sühring F (2017) PALM-USM v1. 0: a new urban surface model integrated into the PALM large-eddy simulation model. Geosci Model Dev 10(10):3635–3659

    Google Scholar 

  • Rodriguez-Alvarez, J. (2013). Heat island and urban morphology: observations and analysis from six European cities. Proceedings of PLEA – 29th Conference on Sustainable Architecture for a Renewable Future. Munich, http://mediatum.ub.tum.de/doc/1169303/1169303.pdf. Accessed 31 January 2018

  • Rodriguez-Alvarez J (2016) Surface urban heat island and building energy: visualization of urban climatic flows. Pós 23:41 www.revistas.usp.br/posfau/article/download/116464/122685. Accessed 31 January 2018

    Google Scholar 

  • Scott KI, Simpson JR, McPherson EG (1999) Effects of tree cover on parking lot microclimate and vehicle emissions. J Arboric 25(3):129–142

    Google Scholar 

  • Schär C, Jendritzky G (2004) Climate change: hot news from summer 2003. Nature 432:559–560

    Google Scholar 

  • Sharma, N. & Pandey, P. (2015). Study of urban heat island in Bathinda city, Punjab. In 16th ESRI India User Conference (pp. 1–14)

  • Sharma A, Coury P, Fernando HJS, Hamlet AF, Hellmann JJ, Chen F (2016) Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: evaluation with a regional climate model. Environ Res Lett 11(6):64004

    Google Scholar 

  • Siebert J, Sievers U, Zdunkowski W (1992) A one-dimensional simulation of the interaction between land surface processes and the atmosphere. Bound-Layer Meteorol 59:1–34

    Google Scholar 

  • Sievers U, Forkel R, Zdunkowski W (1983) Transport equations for heat and moisture in the soil and their application to boundary layer problems. Beiträge zur Physik der Atmosphäre 56:58–83

    Google Scholar 

  • Sievers U, Zdunkowski W (1985) A numerical simulation scheme for the albedo of city street canyons. Bound-Layer Meteorol 33:245–257

    Google Scholar 

  • Sievers U, Zdunkowski W (1986) A microscale urban climate model. Contributions to atmospheric physics. Beiträge zur Physik der Atmosphäre 59:13–40

    Google Scholar 

  • Sievers, U. (1990). Dreidimensionale Simulationen in Stadtgebieten. Umwelt-meteorologie, Schriftenreihe Band 15: Sitzung des Hauptausschusses II am 7. und 8. Juni in Lahnstein (pp. 92–105). Düsseldorf: Kommission Reinhaltung der Luft im VDI und DIN

  • Sievers U (1995) Verallgemeinerung der Stromfunktionsmethode auf drei Dimensionen. Meteorol Z 4:3–15

    Google Scholar 

  • Sievers, U. (2012). Das kleinskalige Strömungsmodell MUKLIMO_3. Teil 1: Theoretische Grundlagen, PCBasisversion, Validierung. In Berichte des Deutschen Wetterdienstes, Band 240. Offenbach am Main, Germany: Deutscher Wetterdienst. http://nbn-resolving.de/urn:nbn:de:101:1-2014081319909. Accessed 1 April 2019

  • Sievers, U. (2016). (Hrsg.: Deutscher Wetterdienst): Das kleinskalige Strömungsmodell MUKLIMO_3. Teil 2: Thermodynamische Erweiterungen. Offenbach am Main: Selbstverlag des Deutschen Wetterdienstes. (Berichte des Deutschen Wetterdienstes; 248) ISBN: 978-3-88148-490-9. http://nbn-resolving.de/urn:nbn:de:101:1-201606173510. Accessed 1 April 2019

  • Šťastný P (1996) Výsledky mobilných meraní teploty z vlhkosti vzduchu v Košiciach. Zborník prác SHMÚ 39:81–111

    Google Scholar 

  • Stewart DI, Oke TR (2012) Local climate zones for urban temperature studies. Bull Am Meteorol Soc 93:1879–1900

    Google Scholar 

  • Szatmári D, Kopecká M, Feranec J, Sviček M (2018) Rozšírená legenda Urban Atlas 2012 (Extended nomenclature Urban Atlas 2012). Geografický ústav SAV, Bratislava http://www.geography.sav.sk/pdf/Rozsirena%20legenda%20Urban%20Atlas%202012.pdf. Accessed 1 April 2019

    Google Scholar 

  • Torok SJ, Morris CJ, Skinner C, Plummer N (2001) Urban heat island features of southeast Australian towns. Aust Meteorol Mag 50(1):1–13

    Google Scholar 

  • Tran H, Uchihama D, Ochi S, Yasuoka Y (2006) Assessment with satellite data of the urban heat island effects in Asian mega cities. Int J Appl Earth Obs Geoinf 8(1):34–48

    Google Scholar 

  • United Nations (2018). World urbanization prospects: the 2018 revision. UN Department of Economic and Social Affairs. https://population.un.org/wup/Publications/Files/WUP2018-KeyFacts.pdf. Accessed 1 April 2019

  • Urban Atlas (2012). https://land.copernicus.eu/local/urban-atlas Accessed 12 February 2020

  • Weng Q (2011) Remote sensing of urban biophysical environment. In: Weng Q (ed) Advances in environmental remote sensing: sensors, algorithms and application. CRC Press, Boca Raton, pp 513–533

    Google Scholar 

  • Willmott CJ (1981) On the validation of models. Phys Geogr 2(2):184–194

    Google Scholar 

  • Yow DM (2007) Urban heat islands: observations, impacts, and adaptation. Geogr Compass 1(6):1227–1251

    Google Scholar 

  • Zhou B, Lauwaet D, Hooyberghs H, De Ridder K, Kropp JP, Rybski D (2016) Assessing seasonality in the surface urban heat island of London. J Appl Meteorol Climatol 55(3):496–505

    Google Scholar 

  • Žuvela-Aloise M, Koch R, Neureiter A, Böhm R, Buchholz S (2014) Reconstructing urban climate of Vienna based on historical maps dating to the early instrumental period. Urban Clim 10:490–508

    Google Scholar 

  • Žuvela-Aloise M, Koch R, Buchholz S, Früh B (2016) Modelling the potential of green and blue infrastructure to reduce urban heat load in the city of Vienna. Clim Chang 135(3–4):425–438

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Hana Contrerasova for translation of this paper into English. The review was proofread by Proof-Reading-Service.com Ltd.

Funding

This paper was supported by the Slovak Research and Development Agency under contract no. APVV-15-0136, “Effect of impermeable soil cover on urban climate in the context of climate change”, and the Slovak Scientific Grant Agency VEGA under grant no. 2/0023/19, “Land cover dynamics as an indicator of changes in the landscape”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juraj Holec.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Fig. 9
figure 9

Comparison of measurement and modelling in the study period. Stations from top to bottom: Koliba (KOL), Letisko (LET), Mamateyova (MAM), Mlynská dolina (MLY), Trnavské mýto (TMY), Biely kostol (TBK), Trnava-centrum (TTC)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holec, J., Feranec, J., Šťastný, P. et al. Evolution and assessment of urban heat island between the years 1998 and 2016: case study of the cities Bratislava and Trnava in western Slovakia. Theor Appl Climatol 141, 979–997 (2020). https://doi.org/10.1007/s00704-020-03197-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-020-03197-1

Navigation