Skip to main content
Log in

Modified neural network operators and their convergence properties with summability methods

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

We study the approximation properties of Cardaliaguet-Euvrard type neural network operators. We first modify the operators in order to get the uniform convergence, later we use regular summability matrix methods in the approximation by means of these operators to get more general results than the classical ones. We also display some examples and show graphical illustrations supporting our approximation results by neural networks operators. At the end of the paper we extend the theory to the multivariate case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anastassiou, G.A.: Rate of convergence of some neural network operators to the unit-univariate case. J. Math. Anal. Appl. 212, 237–262 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Anastassiou, G.A.: Rate of convergence of some multivariate neural network operators to the unit. Comput. Math. Appl. 40(1), 1–19 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Anastassiou, G.A.: Multivariate sigmoidal neural network approximation. Neural Netw. 24(4), 378–386 (2011)

    MATH  Google Scholar 

  4. Anastassiou, G.A.: Multivariate hyperbolic tangent neural network approximation. Comput. Math. Appl. 61(4), 809–821 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Anastassiou, G.A.: Rate of convergence of some neural network operators to the unit-univariate case, revisited. Mat. Vesnik 65(4), 511–518 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Anastassiou, G.A.: Rate of convergence of some multivariate neural network operators to the unit, revisited. J. Comput. Anal. Appl. 15(7), 1300–1309 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Anastassiou, G.A.: Approximation by interpolating neural network operators. Neural Parallel Sci. Comput. 23(1), 1–62 (2015)

    MathSciNet  Google Scholar 

  8. Aslan, I., Duman, O.: A summability process on Baskakov-type approximation. Period. Math. Hungar. 72(2), 186–199 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Aslan, I., Duman, O.: Summability on Mellin-type nonlinear integral operators. Integral Transforms Spec. Funct. 30(6), 492–511 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Aslan, I., Duman, O.: Approximation by nonlinear integral operators via summability process. Math. Nachr. 293(3), 430–448 (2020)

    MATH  Google Scholar 

  11. Atlihan, O.G., Orhan, C.: Summation process of positive linear operators. Comput. Math. Appl. 56(5), 1188–1195 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Boos, J.: Classical and Modern Methods in Summability. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  13. Cao, F., Chen, Z.: Scattered data approximation by neural networks operators. Neurocomputing 190, 237–242 (2016)

    Google Scholar 

  14. Cao, F., Xie, T., Xu, Z.: The estimate for approximation error of neural networks: a constructive approach. Neurocomputing 71(4), 626–630 (2008)

    Google Scholar 

  15. Cao, F., Zhang, Y., He, Z.-R.: Interpolation and rates of convergence for a class of neural networks. Appl. Math. Model. 33(3), 1441–1456 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Cardaliaguet, P., Euvrard, G.: Approximation of a function and its derivative with a neural network. Neural Netw. 5(2), 207–220 (1992)

    Google Scholar 

  17. Cheang, G.H.L.: Approximation with neural networks activated by ramp sigmoids. J. Approx. Theory 162, 1450–1465 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Chen, Z., Cao, F.: The approximation operators with sigmoidal functions. Comput. Math. Appl. 58(4), 758–765 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Chen, Z., Cao, F.: The construction and approximation of neural networks operators with Gaussian activation function. Math. Commun. 18(1), 185–207 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Costarelli, D., Spigler, R.: Multivariate neural network operators with sigmoidal activation functions. Neural Netw. 48, 72–77 (2013)

    MATH  Google Scholar 

  21. Costarelli, D., Spigler, R.: Approximation results for neural network operators activated by sigmoidal functions. Neural Netw. 44, 101–106 (2013)

    MATH  Google Scholar 

  22. Costarelli, D., Spigler, R.: Convergence of a family of neural network operators of the Kantorovich type. J. Approx. Theory 185, 80–90 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Costarelli, D., Vinti, G.: Max-product neural network and quasi-interpolation operators activated by sigmoidal functions. J. Approx. Theory 209, 1–22 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Costarelli, D., Vinti, G.: Convergence for a family of neural network operators in Orlicz spaces. Math. Nachr. 290(2–3), 226–235 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Costarelli, D., Vinti, G.: Estimates for the neural network operators of the max-product type with continuous and \(p\)-integrable functions. Results Math. 73(1), 10 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Costarelli, D., Vinti, G.: Saturation classes for max-product neural network operators activated by sigmoidal functions. Results Math. 72(3), 1555–1569 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Costarelli, D., Vinti, G.: Convergence results for a family of kantorovich max-product neural network operators in a multivariate setting. Math. Slovaca 67(6), 1469–1480 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Cybenko, G.: Approximations by superpositions of sigmoidal functions. Math. Control Signals Syst. 2(4), 303–314 (1989)

    MathSciNet  MATH  Google Scholar 

  29. Duman, O.: Summability process by Mastroianni operators and their generalizations. Mediterr. J. Math. 12(1), 21–35 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Gal, S.G.: Approximation by max-product type nonlinear operators. Stud. Univ. Babeş-Bolyai Math. 56(2), 341–352 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Gokcer, T. Y., Duman, O.: Approximation by max-min operators: a general theory and its applications. Fuzzy Sets Syst. (2019). https://doi.org/10.1016/j.fss.2019.11.007

  32. Gripenberg, G.: Approximation by neural network with a bounded number of nodes at each level. J. Approx. Theory 122(2), 260–266 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Hardy, G.H.: Divergent Series. Clarendon Press, Oxford (1949)

    MATH  Google Scholar 

  34. Keagy, T.A., Ford, W.F.: Acceleration by subsequence transformations. Pacific J. Math. 132(2), 357–362 (1988)

    MathSciNet  MATH  Google Scholar 

  35. Lorentz, G.G., Zeller, K.: Strong and ordinary summability. Tohoku Math. J. Second Ser. 15(4), 315–321 (1963)

    MathSciNet  MATH  Google Scholar 

  36. Mhaskar, H.N.: Approximation Theory and Neural Networks, Wavelets and Allied Topics, 247–289. Narosa, New Delhi (2001)

  37. Mhaskar, H.N., Micchelli, C.A.: Degree of approximation by neural and translation networks with a single hidden layer. Adv. Appl. Math. 16, 151–183 (1995)

    MathSciNet  MATH  Google Scholar 

  38. Mohapatra, R.N.: Quantitative results on almost convergence of a sequence of positive linear operators. J. Approx. Theory 20, 239–250 (1977)

    MathSciNet  MATH  Google Scholar 

  39. Makovoz, Y.: Uniform approximation by neural networks. J. Approx. Theory 95(2), 21–228 (1998)

    MathSciNet  MATH  Google Scholar 

  40. Sakaoğlu, I., Orhan, C.: Cihan Strong summation process in \(L_{p}\)-spaces. Nonlinear Anal. 86, 89–94 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Silverman, L.L.: On the definition of the sum of a divergent series, University of Missouri Studies. Math. Ser. I, 1–96 (1913)

    Google Scholar 

  42. Smith, D.A., Ford, W.F.: Acceleration of linear and logarithmic convergence. SIAM J. Numer. Anal. 16(2), 223–240 (1979)

    MathSciNet  MATH  Google Scholar 

  43. Swetits, J.J.: On summability and positive linear operators. J. Approx. Theory 25, 186–188 (1979)

    MathSciNet  MATH  Google Scholar 

  44. Toeplitz, O.: Über die lineare Mittelbildungen. Prace mat.-fiz. 22, 113–118 (1911)

    MATH  Google Scholar 

  45. Vanderbei, R.J.: Uniform Continuity is Almost Lipschitz Continuity, Technical Report SOR-91 11. Statistics and Operations Research Series. Princeton University, Princeton (1991)

    Google Scholar 

  46. Wimp, J.: Sequence Transformations and Their Applications. Academic Press, New York (1981)

    MATH  Google Scholar 

  47. Yu, D.S.: Approximation by neural networks with sigmoidal functions. Acta Math. Sin. (Engl. Ser.) 29(10), 2013–2026 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oktay Duman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turkun, C., Duman, O. Modified neural network operators and their convergence properties with summability methods. RACSAM 114, 132 (2020). https://doi.org/10.1007/s13398-020-00860-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-020-00860-0

Keywords

Mathematics Subject Classification

Navigation