Skip to main content
Log in

Ion-acoustic compressive and rarefactive solitary waves in unmagnetised plasmas with positrons and two-temperature superthermal electrons

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Ion-acoustic solitary waves (IASWs) in plasma consisting of ions, positrons and superthermal electrons in two distinct temperatures have been studied. The reductive perturbation method (RPM) has been employed to derive the Korteweg–de Vries and modified KdV equation. Numerical and analytical studies show that compressive and rarefactive solitons exist for the selected parametric range depending on the spectral indexes, \(\kappa \) \((\kappa _{h,} \kappa _{c} )\) and their respective densities \((\nu ,\mu )\). It is found that spectral indexes \((\kappa _{h,} \kappa _{c})\) and their relative densities have significant impact on the basic properties, i.e., amplitude and width as well as on the nature of IASWs. Variations of amplitude and width for the compressive and rarefactive solitary waves have been analysed graphically with different plasma parameters like spectral indexes of cold and hot electrons \((k_{c} ,k_{h}),\) their respective densities, ionic temperature ratio, positron temperature ratio as well as with the temperature ratio of the two-electron species. The amplitude of the compressive (rarefactive) solitary waves increases (decreases) on increasing \(k_{h}\). However, the amplitude of the compressive (rarefactive) solitary waves decreases (increases) on increasing \(k_{c}\). The investigations of such solitary waves may be helpful for the critical understanding of space where superthermal electrons with two different temperatures exist along with positrons and ions (e.g. Saturn’s magnetosphere, pulsar magnetosphere).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R E Ergun et al, Geophys. Res. Lett. 25, 2041 (1998)

    ADS  Google Scholar 

  2. L Anderson et al, Phys. Rev. Lett. 102, 225004 (2009)

    ADS  Google Scholar 

  3. H Matusmoto, X H Deng, H Kojima and R R Anderson, Geophys. Res. Lett. 30, 1326 (2003)

    ADS  Google Scholar 

  4. L B Wilson III, C Cattell, P J Kellogg, K Geotz, K Kersten, L Hanson, R MacGregor and J C Kapser, Phys. Rev. Lett. 99, 041101 (2007)

    ADS  Google Scholar 

  5. B Lefebvre, L Chen, W Gekelman, P Kitner, J Pickett, P Pribyl, S Vincena, F Chiang and J Judy, Phys. Rev. Lett. 105, 115001 (2010)

    ADS  Google Scholar 

  6. B Buti, J. Plasma Phys. 24, 169 (1980)

    ADS  Google Scholar 

  7. K Nishihara and M Tajiri, J. Phys. Soc. Jpn. 50, 4047 (1981)

    ADS  Google Scholar 

  8. S S Dash and B Buti, Phys. Lett. A 81, 347 (1981)

    ADS  Google Scholar 

  9. O N Krokhin and S P Tsybenko, Sov. J. Plasma Phys. 12, 365 (1986)

    Google Scholar 

  10. S Baboolal, R Bharuthram and M A Hellberg, Phys. Fluids B 2, 2259 (1990)

    ADS  Google Scholar 

  11. L L Yadav and S R Sharma, Phys. Lett. A 150, 397 (1990)

    ADS  Google Scholar 

  12. V K Sayal, L L Yadav and S R Sharma, Phys. Scr. 47, 576 (1993)

    ADS  Google Scholar 

  13. S S Ghosh, K K Ghosh, A N Sekar Iyengar, Phys. Plasmas 3, 3939 (1996)

    ADS  Google Scholar 

  14. M K Mishra, R S Tiwari and S K Jain, Phys. Rev. E 76, 036401 (2007)

    ADS  Google Scholar 

  15. R Bharuthram, E Momoniat, F Mahomed, S V Singh and M K Islam, Phys. Plasmas 15, 082304 (2008)

    ADS  Google Scholar 

  16. T K Baluku and M A Hellberg, Phys. Plasmas 19, 012106 (2012)

    ADS  Google Scholar 

  17. M K Mishra, R S Tiwari and J K Chawla, Phys. Plasmas 19, 062303 (2012)

    ADS  Google Scholar 

  18. S K Jain and M K Mishra, Astrophys. Space Sci. 346, 395 (2013)

    ADS  Google Scholar 

  19. Y Nishida and T Nagasawa, Phys. Fluids 29, 345 (1986)

    ADS  Google Scholar 

  20. V K Sayal and S R Sharma, Phys. Lett. A 149, 155 (1990)

    ADS  Google Scholar 

  21. M M Masud, I Tasnim and A A Mamun, Pramana – J. Phys84, 137 (2015)

    ADS  Google Scholar 

  22. P Christon, D G Mitchell, D J Williams, L A Frank, C Y Huang and T E Eastman, J. Geophys. Res. 93, 2562 (1995)

    ADS  Google Scholar 

  23. R A Crains, A A Mamun, R Bingham, R Bostrom, R O Dendy, C M C Naim and P K Shukla, Geophys. Res. Lett. 22, 2709 (1995)

    ADS  Google Scholar 

  24. V Pierrard and J Lemaire, J. Geophys. Res. 101, 7923 (1996)

    ADS  Google Scholar 

  25. O Adriani et al, Nature 458, 607 (2009)

    ADS  Google Scholar 

  26. E C Sittler, Jr, K W Ogilive and J D Scudder, J. Geophys. Res. 88, 8847 (1983)

    ADS  Google Scholar 

  27. D D Barbosa and W S Kurth, J. Geophys. Res98, 9351 (1993)

    ADS  Google Scholar 

  28. D T Young et al, Science 307, 1262 (2005)

    ADS  Google Scholar 

  29. P Schippers et al, J. Geophys. Res. 113, A07208 (2008)

    ADS  Google Scholar 

  30. D P Chapagi, J Tamang and A Saha, https://doi.org/10.1515/zna-2019-0210

  31. A Saha and P Chatterjee, Astrophys. Space Sci. 163, 353 (2014)

    Google Scholar 

  32. M A Hellberg, R L Mace, T K Baluku, I Kourakis and N S Saini, Phys. Plasmas 16, 094701 (2009)

    ADS  Google Scholar 

  33. N Boubakour, M Tribeche and K Aoutou, Phys. Scr. 79, 065503 (2009)

    ADS  Google Scholar 

  34. S A El-Tantawy and W M Moslem, Phys. Plasmas 18, 112105 (2011)

    ADS  Google Scholar 

  35. S A El-Tantawy, N A El-Bedwehy and W M Moslem, Phys. Plasmas 18, 052113 (2011)

    ADS  Google Scholar 

  36. S K El-Labany, R Sabry, E F El-Shamy and D M Khedr, J. Plasma Phys. 79, 613 (2013)

    ADS  Google Scholar 

  37. A Panwar, C M Ryu and A S Bains, Phys. Plasmas 21, 122105 (2014)

    ADS  Google Scholar 

  38. E F El-Shamy, Phys. Plasmas 21, 082110 (2014)

    ADS  Google Scholar 

  39. M S Alam, M M Masaud and A A Mamun, Astrophys. Space Sci. 349, 245 (2014)

    ADS  Google Scholar 

  40. A Saha, N Pal and P Chatterjee, Phys. Plasmas 21, 102101 (2014)

    ADS  Google Scholar 

  41. N S Saini, B S Chahal, A S Bains and C Bedi, Phys. Plasmas 21, 022114 (2014)

    ADS  Google Scholar 

  42. A S Bains, A Panwar and C M Ryu, Astrophys. Space Sci. 360, 17 (2015)

    ADS  Google Scholar 

  43. P Chatterjee, R. Ali and A Saha, https://doi.org/10.1515/zna-2017-0358

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J K Chawla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhadiya, P.C., Chawla, J.K. & Jain, S.K. Ion-acoustic compressive and rarefactive solitary waves in unmagnetised plasmas with positrons and two-temperature superthermal electrons. Pramana - J Phys 94, 80 (2020). https://doi.org/10.1007/s12043-020-1943-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-1943-8

Keywords

PACS Nos

Navigation