Skip to main content
Log in

Realisation of parallel logic elements and memory latch in a quasiperiodically-driven simple nonlinear circuit

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We investigate the effect of two aperiodic square waves in a quasiperiodically-driven Murali–Lakshmanan–Chua circuit. It is found that the response of the circuit produces logical output in both strange nonchaotic and chaotic regions. Changing the biasing of the circuit changes the response of the circuit into another kind of logic operation and SR flip flop. Further, we show how this circuit produces two logical elements as its outputs which are complementary to each other. It is also shown that the logical nature of the circuit persists even when experimental noise is present. Thus, we confirm that both the dynamical behaviours, namely strange nonchaos and chaos, can be efficient tools to construct computer architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. J J Hopfield, Proc. Natl. Acad. Sci. 79(8), 2554 (1982)

    ADS  MathSciNet  Google Scholar 

  2. S Sinha and W L Ditto, Phys. Rev. Lett. 81(10), 2156 (1998)

    ADS  Google Scholar 

  3. S Sinha and W L Ditto, Phys. Rev. E 60(1), 363 (1999)

    ADS  Google Scholar 

  4. B S Prusha and J F Lindner, Phys. Lett. A 263(1), 105 (1999)

    ADS  MathSciNet  Google Scholar 

  5. T Munakata, S Sinha and W L Ditto, IEEE Trans. Circuits Syst. I 49(11), 1629 (2002)

    Google Scholar 

  6. S Sinha, T Munakata and W L Ditto, Phys. Rev. E 65(3), 036216 (2002)

    ADS  Google Scholar 

  7. K Murali, S Sinha and W L Ditto, Phys. Rev. E 68(1), 016205 (2003)

    ADS  Google Scholar 

  8. D Kuo, IEEE Potentials 24(2), 13 (2005)

    Google Scholar 

  9. D Cafagna and G Grassi, Int. J. Bifurc. Chaos 16(05), 1521 (2006)

    Google Scholar 

  10. P R Venkatesh, A Venkatesan and M Lakshmanan, Pramana – J. Phys. 86(6), 1195 (2016)

    ADS  Google Scholar 

  11. P R Venkatesh, A Venkatesan and M Lakshmanan, Chaos 27(3), 33105 (2017)

    MathSciNet  Google Scholar 

  12. P R Venkatesh, A Venkatesan and M Lakshmanan, Chaos 27(8), 083106 (2017)

    ADS  MathSciNet  Google Scholar 

  13. A Rahmati and M A Amandadi, Pramana – J. Phys. 93(6), 90 (2019)

    ADS  Google Scholar 

  14. K Murali, S Sinha, W L Ditto and A R Bulsara, Phys. Rev. Lett. 102(10), 104101 (2009)

    ADS  Google Scholar 

  15. K Murali, I Rajamohamed, S Sinha, W L Ditto and A R Bulsara, Appl. Phys. Lett. 95(19), 194102 (2009)

    ADS  Google Scholar 

  16. A R Bulsara, A Dari, W L Ditto, K Murali and S Sinha, J. Chem. Phys375(2–3), 424 (2010)

    Google Scholar 

  17. D N Guerra, A R Bulsara, W L Ditto, S Sinha, K Murali and P Mohanty, Nano Lett. 10(4), 1168 (2010)

    ADS  Google Scholar 

  18. L Worschech, F Hartmann, T Y Kim, S Höfling, M Kamp, A Forchel, J Ahopelto, I Neri, A Dari and L Gammaitoni, Appl. Phys. Lett. 96(4), 042112 (2010)

    ADS  Google Scholar 

  19. J Z Munt and C Masoller, Opt. Express 18(16), 16418 (2010)

    ADS  Google Scholar 

  20. K P Singh and S Sinha, Phys. Rev. E 83(4), 046219 (2011)

    ADS  Google Scholar 

  21. S Sinha, J M Cruz, T Buhse and P Parmananda, Europhys. Lett. 86(6), 60003 (2009)

    ADS  Google Scholar 

  22. H Ando, S Sinha, R Storni and K Aihara, Europhys. Lett. 93(5), 50001 (2011)

    ADS  Google Scholar 

  23. A Dari, B Kia, A R Bulsara and W L Ditto, Chaos 21(4), 047521 (2011)

    ADS  Google Scholar 

  24. E H Hellen, S K Dana, B Zhurov and E Volkov, PLoS ONE 8(5), e62997 (2013)

    ADS  Google Scholar 

  25. E H Hellen, S K Dana, J Kurths, E Kehler and S Sinha, Plos ONE 8(10), e76032 (2013)

    ADS  Google Scholar 

  26. V Kohar, K Murali and S Sinha, Commun. Nonlinear Sci. Numer. Simul. 19(8), 2866 (2014)

    ADS  MathSciNet  Google Scholar 

  27. B Kia, A Dari, W L Ditto and M L Spano, Chaos 21(4), 047520 (2011)

    ADS  Google Scholar 

  28. V Kohar and S Sinha, Phys. Lett. A 376(8–9), 957 (2012)

    ADS  Google Scholar 

  29. R Storni, H Ando, K Aihara, K Murali and S Sinha, Phys. Lett. A 376(8–9), 930 (2012)

    ADS  Google Scholar 

  30. Y Xu, X Jin, H Zhang and T Yang, J. Stat. Phys. 152(4), 753 (2013)

    ADS  MathSciNet  Google Scholar 

  31. V M Aravind, K Murali and S Sinha, Phys. Lett. A 382(24), 1581 (2018)

    ADS  MathSciNet  Google Scholar 

  32. B Kia, S Kia, J F Lindner, S Sinha and W L Ditto, Chaos 24(4), 043110 (2014)

    ADS  MathSciNet  Google Scholar 

  33. V Kohar, B Kia, J F Lindner and W L Ditto, Phys. Rev. Appl. 7(4), 044006 (2017)

    ADS  Google Scholar 

  34. L Zhang, A Song and J He, Phys. Rev. E 82(5), 051106 (2010)

    ADS  Google Scholar 

  35. M S Aravindh, A Venkatesan and M Lakshmanan, Phys. Rev. E 97(5), 052212 (2018)

    ADS  MathSciNet  Google Scholar 

  36. K Murali, S Sinha, V Kohar, B Kia and W L Ditto, PloS ONE 13(12), e0209037 (2018)

    Google Scholar 

  37. A Venkatesan, K Murali and M Lakshmanan, Phys. Lett. A 259(3), 246 (1999)

    ADS  MathSciNet  Google Scholar 

  38. M Lakshmanan and K Murali, Chaos in nonlinear oscillators: Controlling and synchronization (World Scientific, Singapore, 1996) Vol. 13

    MATH  Google Scholar 

  39. M Lakshmanan and S Rajasekar, Nonlinear dynamics: Integrability, chaos and patterns (Springer-Verlag, Berlin, 2003)

    MATH  Google Scholar 

  40. A Prasad, S S Negi and R Ramaswamy, Int. J. Bifurc. Chaos 11(02), 291 (2001)

    Google Scholar 

  41. P M Ezhilarasu, M Inbavalli, K Murali and K Thamilmaran, Pramana – J. Phys. 91(1): 4 (2018)

    ADS  Google Scholar 

  42. Y C Lai, Phys. Rev. E53 (1), 57 (1996)

    ADS  MathSciNet  Google Scholar 

  43. E J Ngamga, A Nandi, R Ramaswamy, M C Romano, M Thiel and J Kurths, Phys. Rev. E 75 (3), 036222 (2007)

    ADS  Google Scholar 

  44. I A Khovanov, N A Khovanova, P V E McClintock and V S Anishchenko, Phys. Lett. A268 (4–6), 315 (2000)

    ADS  Google Scholar 

  45. I Campos-Cantón, E Campos-Cantón, H C Rosu and E Castellanos-Velasco, Signal Process31 (2), 753 (2012)

    Google Scholar 

  46. T L Floyd, Digital fundamentals, 10/e (Pearson Education India, Bengaluru, 2011)

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank Dr K Srinivasan and Mr P Megavarna Ezhilarasu for helping them with experimental verification. MS is grateful to CSIR for providing a fellowship under SRF Scheme No. 08/711(0001)2K19-EMR-I. The work of MS and ML forms part of a research project sponsored by DST-SERB under Grant No. EMR/2014/001076. AV is supported by the DST-SERB research project under Grant No. EMR/2017/002813. ML also acknowledges the financial support under the DST-SERB Distinguished Fellowship program under Grant No. SB/DF/04/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Venkatesan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathish Aravindh, M., Gopal, R., Venkatesan, A. et al. Realisation of parallel logic elements and memory latch in a quasiperiodically-driven simple nonlinear circuit. Pramana - J Phys 94, 78 (2020). https://doi.org/10.1007/s12043-020-1939-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-1939-4

Keywords

PACS Nos

Navigation