Skip to main content
Log in

Spiking neural firefly optimization scheme for the capacitated dynamic vehicle routing problem with time windows

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A number of technological improvements have prompted a great concern on ‘dynamism’ in vehicle routing problems (VRP). In real-world applications, the dynamic information happens simultaneously with the plan being carried out. In order to effectively solve dynamic VRP (DVRP), many optimization strategies have been introduced in the literature. A new variant of vehicle routing problem is proposed which combines DVRP with time windows and capacity constraints, named capacitated DVRP with time windows (CDVRPTW). Apart from the traditional way of handling the problem, this paper proposes a novel strategy that incorporates improved firefly algorithm (IFA) into the framework of spiking neural P (SN P) systems, named spiking neural firefly optimization (SFO). A mathematical model of the problem is formulated, and the solution scheme is designed by associating a number of SN P systems that work in parallel to find optimal solutions in a reasonable time. Additionally, the parameters in the IFA are optimized by adjusting the rule probabilities using SN P systems. Being a NP-hard problem with real-world applications, the benefits of this study are far-reaching. The proposed scheme has been tested on benchmark instances and proved novelty, feasibility, and potentiality of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Rozenberg G, Bäck T, Kok JN (eds) (2012) Handbook of natural computing. Springer, Berlin, pp 461–477

    Book  Google Scholar 

  2. Agatonovic-Kustrin S, Beresford R (2000) Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal 22(5):717–727. https://doi.org/10.1016/S0731-7085(99)00272-1

    Article  Google Scholar 

  3. Zhang Y, Agarwal P, Bhatnagar V, Balochian S, Yan J (2013) Swarm intelligence and its applications. Sci World J. https://doi.org/10.1155/2013/528069

    Article  Google Scholar 

  4. Bartz-Beielstein T, Branke J, Mehnen J, Mersmann O (2014) Evolutionary algorithms. Wiley Interdiscip Rev Data Min Knowl Discov. https://doi.org/10.1002/widm.1124

    Article  Google Scholar 

  5. Gruska J (1999) Quantum computing, vol 2005. McGraw-Hill, London

    MATH  Google Scholar 

  6. Păun G (2010) A quick introduction to membrane computing. J Logic Algebr Program 79(6):291–294. https://doi.org/10.1016/j.jlap.2010.04.002

    Article  MathSciNet  MATH  Google Scholar 

  7. Păun G, Rozenberg G (2002) A guide to membrane computing. Theor Comput Sci 287(73):100–3975. https://doi.org/10.1016/S0304-3975(02)00136-6

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhao Y, Liu X, Wang W (2016) Spiking neural P systems with neuron division and dissolution. PLoS ONE 11:e0162882. https://doi.org/10.1371/journal.pone.0162882

    Article  Google Scholar 

  9. Pan L, Păun G, Pérez-Jiménez M (2011) Spiking neural P systems with neuron division and budding. Science China. Inf Sci 54:1596–1607. https://doi.org/10.1007/s11432-011-4303-y

    Article  MathSciNet  MATH  Google Scholar 

  10. Song X, Wang J, Peng H, Ning G, Sun Z, Wang T, Yang F (2018) Spiking neural P systems with multiple channels and anti-spikes. Biosystems 169–170:13–19. https://doi.org/10.1016/j.biosystems.2018.05.004

    Article  Google Scholar 

  11. Chen H, Freund R, Ionescu M, Paun G, Pérez-Jiménez M (2007) On string languages generated by spiking neural P systems. Fundam Inform 75:141–162

    MathSciNet  MATH  Google Scholar 

  12. Zhang G, Rong H, Neri F, Pérez-Jiménez M (2014) An optimization spiking neural P system for approximately solving combinatorial optimization problems. Int J Neural Syst 24:1440006. https://doi.org/10.1142/S0129065714400061

    Article  Google Scholar 

  13. García-Arnau M, Pérez D, Rodríguez-Patón A, Sosík P (2009) Spiking neural P systems: stronger normal forms. IJUC 5:411–425

    Google Scholar 

  14. Pérez-Jiménez MJ (2010) A computational complexity theory in membrane computing. In: WMC 2009. Lecture notes in computer science, vol 5957. Springer, Berlin. https://doi.org/10.1007/978-3-642-11467-0_10

  15. Chen Z, Zhang P, Wang X, Shi X, Wu T, Zheng P (2016) A computational approach for nuclear export signals identification using spiking neural P systems. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2489-z

    Article  Google Scholar 

  16. Díaz-Pernil D, Gutiérrez-Naranjo M (2017) Semantics of deductive databases with spiking neural P systems. Neurocomputing. https://doi.org/10.1016/j.neucom.2017.07.007

    Article  Google Scholar 

  17. Diaz C, Frias T, Sanchez G, Perez-Meana H, Toscano K, Duchen G (2017) A novel parallel multiplier using spiking neural P systems with dendritic delays. Neurocomputing. https://doi.org/10.1016/j.neucom.2017.02.009

    Article  Google Scholar 

  18. Tingfang W, Wang Y, Jiang S, Yansen S, Shi X (2018) Spiking neural P systems with rules on synapses and anti-spikes. Theor Comput Sci 724:13–27. https://doi.org/10.1016/j.tcs.2017.12.015

    Article  MathSciNet  MATH  Google Scholar 

  19. Deb K (2014) Multi-objective optimization. In: Search methodologies. Springer, Boston, pp 403–449

  20. Bansal JC, Sharma H, Jadon SS et al (2014) Spider monkey optimization algorithm for numerical optimization. Memet Comput 6:31. https://doi.org/10.1007/s12293-013-0128-0

    Article  Google Scholar 

  21. Brownlee J (2011) Clever algorithms: nature-inspired programming recipes, Lulu.com

  22. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  23. Zmazek B, Taranenko A, Smid M (2005) Capacitated VRP with time windows and multiple trips within working day, pp 104–109. https://doi.org/10.1109/iti.2005.1491105

  24. Cardoso Pedro JS, Schütz G, Mazayev A, Ey E, Corrêa T (2015) A Solution for a Real-time Stochastic Capacitated Vehicle Routing Problem with Time Windows. Procedia Computer Science 51:2227–2236. https://doi.org/10.1016/j.procs.2015.05.501

    Article  Google Scholar 

  25. Yang XS (2009) Firefly algorithms for multimodal optimization. In: Watanabe O, Zeugmann T (eds) Stochastic algorithms: foundations and applications. SAGA 2009. Lecture notes in computer science, vol 5792. Springer, Berlin

  26. Gandomi A, Yang X, Alavi A (2011) Mixed variable structural optimization using firefly algorithm. Comput Struct 89(23):2325–2336

    Article  Google Scholar 

  27. Gao M, He X, Luo D, Jiang J, Teng Q (2013) Object tracking using firefly algorithm. IET Comput Vis 7(4):227–237

    Article  Google Scholar 

  28. Altabeeb AM, Mohsen AM, Ghallab A (2019) An improved hybrid firefly algorithm for capacitated vehicle routing problem. Appl Soft Comput 84:105728. https://doi.org/10.1016/j.asoc.2019.105728

    Article  Google Scholar 

  29. Osaba E, Yang X, Diaz F et al (2017) A discrete firefly algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with recycling policy. Soft Comput 21:5295–5308. https://doi.org/10.1007/s00500-016-2114-1

    Article  Google Scholar 

  30. Aggarwal D, Chahar V, Girdhar A (2017) Firefly algorithm for the vehicle routing problem with time windows. https://doi.org/10.1109/icacci.2018.8554555

  31. Yesodha R, Amudha T (2019) An improved firefly algorithm for capacitated vehicle routing optimization. In: 2019 amity international conference on artificial intelligence (AICAI), Dubai, United Arab Emirates, pp 163–169. https://doi.org/10.1109/aicai.2019.8701269

  32. Clarke G, Wright JW (1964) Scheduling of vehicles from a central depot to a number of delivery points. Oper Res 12(4):568–581

    Article  Google Scholar 

  33. Crainic TG, Gendreau M, Potvin J-Y (2009) Intelligent freight-transportation systems: assessment and the contribution of operations research. Transp Res Part C Emerg Technol 17(6):541–557. https://doi.org/10.1016/j.trc.2008.07.002

    Article  Google Scholar 

  34. Attanasio A, Bregman J, Ghiani G, Manni E (2007). Real-time fleet management at Ecourier Ltd. In: Zeimpekis V, Tarantilis CD, Giaglis GM, Minis I (eds) Dynamic fleet management, volume 38 of operations research/computer science interfaces, chapter 10, pp 219–238. Springer, New York

  35. Godfrey G, Powell WB (2002) An adaptive dynamic programming algorithm for dynamic fleet management, I: single period travel times. Transp Sci 36(1):21–39

    Article  Google Scholar 

  36. Powell WB, Topaloglu H (2005) Fleet management. In: Wallace S, Ziemba W (eds) Applications of stochastic programming, volume 5 of MPS-SIAM series on optimization, chapter 12. SIAM, pp 185–215

  37. Simao H, Day J, George A, Gifford T, Nienow J, Powell WB (2009) An approximate dynamic programming algorithm for large-scale fleet management: a case application. Transp Sci 43(2):178–197

    Article  Google Scholar 

  38. Du T, Wang FK, Lu P-Y (2007) A real-time vehicle-dispatching system for consolidating milk runs. Transp Res Part E Logist Transp Rev 43(5):565–577. https://doi.org/10.1016/j.tre.2006.03.001

    Article  Google Scholar 

  39. Taniguchi E, Thompson R (2002) Modeling city logistics. Transp Res Rec J Transp Res Board 1790(1):45–51

    Article  Google Scholar 

  40. Barcelo J, Grzybowska H, Pardo S (2007) Vehicle routing and scheduling models, simulation and city logistics. In: Zeimpekis V, Tarantilis CD, Giaglis GM, Minis I (eds) Dynamic fleet management. Operations research/computer science interfaces, vol 38. US, Springer, pp 163–195

    Google Scholar 

  41. Zeimpekis V, Minis I, Mamassis K, Giaglis GM (2007) Dynamic management of a delayed delivery vehicle in a city logistics environment. In: Zeimpekis V, Tarantilis CD, Giaglis GM, Minis I (eds) Dynamic fleet management, volume 38 of operations research/computer science interfaces series, chapter 9. Springer, New York, pp 197–217

  42. Gendreau M, Guertin F, Potvin J-Y, Séguin R (2006) Neighborhood search heuristics for a dynamic vehicle dispatching problem with pick-up sand deliveries. Transp Res Part C Emerg Technol 14(3):157–174. https://doi.org/10.1016/j.trc.2006.03.002

    Article  Google Scholar 

  43. Ghiani G, Manni E, Quaranta A, Triki C (2009) Anticipatory algorithms for same-day courier dispatching. Transp Res Part E Logist Transp Rev 45(1):96–106. https://doi.org/10.1016/j.tre.2008.08.003

    Article  Google Scholar 

  44. Bieding T, Görtz S, Klose A (2009) On line routing per mobile phone a case on subsequent deliveries of newspapers. In: Nunen JA, Speranza MG, Bertazzi L (eds) Innovations in distribution logistics. Lecture notes in economics and mathematical systems, vol 619. Berlin, Springer, pp 29–51

    Chapter  Google Scholar 

  45. Campbell A, Savelsbergh M (2005) Decision support for consumer direct grocery initiatives. Transp Sci 39(3):313–327

    Article  Google Scholar 

  46. Ferrucci F, Bock S, Gendreau M (2011) Real-time distribution of perishable goods using past request information to anticipate future requests. Oper Res 34

  47. Azi N, Gendreau M, Potvin JY (2011) A dynamic vehicle routing problem with multiple delivery routes. Ann Oper Res 13 (in press)

  48. Balev S, Guinand F, Lesauvage G, Olivier D (2009) Dynamical handling of straddle carriers activities on a container terminal in uncertain environment—a swarm intelligence approach. In: Proceedings of the 2009 international conference on complex systems and applications (ICCSA 2009), Le Havre, France. University of Le Havre

  49. Berbeglia G, Cordeau J-F, Laporte G (2010) Dynamic pickup and delivery problems. Eur J Oper Res 202(1):8–15. https://doi.org/10.1016/j.ejor.2009.04.024

    Article  MATH  Google Scholar 

  50. Smolic-Rocak N, Bogdan S, Kovacic Z, Petrovic T (2010) Time windows based dynamic routing in multi-agv systems. IEEE Trans Autom Sci Eng 7(1):151–155. https://doi.org/10.1109/TASE.2009.2016350

    Article  Google Scholar 

  51. Fiegl C, Pontow C (2009) Online scheduling of pick-up and delivery tasks in hospitals. J Biomed Inform 42(4):624–632. https://doi.org/10.1016/j.jbi.2009.02.003

    Article  Google Scholar 

  52. Caramia M, Italiano G, Oriolo G, Pacifici A, Perugia A (2002) Routing a fleet of vehicles for dynamic combined pick-up and deliveries services. In: Proceedings of the symposium on operation research 2001, Duisburg, Germany, pp 3–5

  53. Beaudry A, Laporte G, Melo T, Nickel S (2010) Dynamic transportation of patients in hospitals. OR Spectrum 32:77–107. https://doi.org/10.1007/s00291-008-0135-6

    Article  MATH  Google Scholar 

  54. Kergosien Y, Lenté C, Piton D, Billaut J-C (2011) A tabu search heuristic for the dynamic transportation of patients between care units. Eur J Oper Res. https://doi.org/10.1016/j.ejor.2011.04.033

    Article  MATH  Google Scholar 

  55. Romero M, Sheremetov L, Soriano A (2007) A genetic algorithm for the pickup and delivery problem: an application to the helicopter offshore transportation. In: Theoretical advances and applications of fuzzy logic and soft computing, volume 42 of advances in soft computing. Springer, Berlin, pp 435–444

  56. Powell WB (2007) Approximate dynamic programming: solving the curses of dimensionality, volume 703 of Wiley series in probability and statistics. Wiley, Hoboken

  57. Kilby P, Prosser P, Shaw P (1998) Dynamic VRPs: a study of scenarios. Technical Report APES-06-1998, University of Strathclyde, Glasgow, Scotland

  58. Yang J, Jaillet P, Mahmassani H (2004) Real-time multivehicle truckload pickup and delivery problems. Transp Sci 38(2):135–148. https://doi.org/10.1287/trsc.1030.0068

    Article  Google Scholar 

  59. Chen Z, Xu H (2006) Dynamic column generation for dynamic vehicle routing with time windows. Transp Sci 40(1):74–88

    Article  Google Scholar 

  60. Montemanni R, Gambardella LM, Rizzoli AE, Donati AV (2005) Ant colony system for a dynamic vehicle routing problem. J Combin Optim 10(4):327–343. https://doi.org/10.1007/s10878-005-4922-6

    Article  MathSciNet  MATH  Google Scholar 

  61. Gambardella L, Rizzoli A, Oliverio F, Casagrande N, Donati A, Montemanni R, Lucibello E (2003) Ant colony optimization for vehicle routing in advanced logistics systems. In: Proceedings of the international workshop on modelling and applied simulation (MAS 2003), pp 3–9

  62. Rizzoli A, Montemanni R, Lucibello E, Gambardella L (2007) Ant colony optimization for real-world vehicle routing problems. Swarm Intell 1:135–151

    Article  Google Scholar 

  63. Taillard ED, Gambardella LM, Gendreau M, Potvin J-Y (2001) Adaptive memory programming: a unified view of metaheuristics. Eur J Oper Res 135(1):1–16. https://doi.org/10.1016/S03772217(00)00268-X

    Article  MathSciNet  MATH  Google Scholar 

  64. Ichoua S, Gendreau M, Potvin J-Y (2000) Diversion issues in real-time vehicle dispatching. Transp Sci 34(4):426–438. https://doi.org/10.1287/trsc.34.4.426.12325

    Article  MATH  Google Scholar 

  65. Ichoua S, Gendreau M, Potvin J-Y (2003) Vehicle dispatching with time-dependent travel times. Eur J Oper Res 144(2):379–396. https://doi.org/10.1016/S0377-2217(02)00147-9

    Article  MATH  Google Scholar 

  66. Romero M, Sheremetov L, Soriano A (2007) A genetic algorithm for the pickup and delivery problem: an application to the helicopter offshore transportation. In: Castillo O, Melin P, Ross OM, Sepúlveda Cruz R, Pedrycz W, Kacprzyk J (eds) Theoretical advances and applications of fuzzy logic and soft computing. Advances in soft computing, vol 42. Springer, Berlin

  67. Al Chami Z, Manier H, Manier M-A, Fitouri C (2017) A hybrid genetic algorithm to solve a multi-objective Pickup and Delivery Problem. IFAC-Papers OnLine 50(1):14656–14661. https://doi.org/10.1016/j.ifacol.2017.08.1906

    Article  Google Scholar 

  68. Powell WB, Sheffi Y, Nickerson KS, Butterbaugh K, Atherton S (1988) Maximizing profits for North American Van Lines’ truckload division: a new framework for pricing and operation. Interfaces 18(1):21–41

    Article  Google Scholar 

  69. Thomas BW, White CCI (2004) Anticipatory route selection. Transp Sci 38(4):473–487. https://doi.org/10.1287/trsc.1030.0071

    Article  Google Scholar 

  70. Powell WB, Bouzaiene-Ayari B, Simao H (2007) Dynamic models for freight transportation. In: Barnhart C, Laporte G (eds) Transportation, volume 14 of handbooks in operations research and management science, chapter 5. North-Holland, pp 285–365

  71. Yang S, Hamedi M, Haghani A (2005) Online dispatching and routing model for emergency vehicles with area coverage constraints. In: Network modeling 2005, number 1923 in transportation research record, pp 1–8

  72. Haghani A, Yang S (2007) Real-time emergency response fleet deployment: concepts, systems, simulation and case studies. In: Zeimpekis V, Tarantilis CD, Giaglis GM, Minis I (eds) Dynamic fleet management. Operations research/computer science interfaces, vol 38. Springer, New York, pp 133–162

    Google Scholar 

  73. Solomon MM (1987) Algorithms for the vehicle-routing and scheduling problems with time window constraints. Oper Res 35(2):254–265

    Article  MathSciNet  Google Scholar 

  74. Flatberg T, Hasle G, Kloster O, Nilssen EJ, Riise A (2007) Dynamic and stochastic vehicle routing in practice. In: Zeimpekis V, Tarantilis CD, Giaglis GM, Minis I (eds) Dynamic fleet management, volume 38 of operations research/computer science interfaces, vol 38. US, Springer, pp 41–63

    Google Scholar 

  75. Pillac V, Guéret C, Medaglia AL (2012) An event-driven optimization framework for dynamic vehicle routing. Decis Support Syst. https://doi.org/10.1016/j.dss.2012.06.007

    Article  MATH  Google Scholar 

  76. Hvattum LM, Lokketangen A, Laporte G (2006) Solving a dynamic and stochastic vehicle routing problem with a sample scenario hedging heuristic. Transp Sci 40(4):421–438. https://doi.org/10.1287/trsc.1060.0166

    Article  Google Scholar 

  77. Mitrović-Minić S, Krishnamurti R, Laporte G (2004) Double-horizon based heuristics for the dynamic pickup and delivery problem with time windows. Transp Res Part B Methodol 38(8):669–685. https://doi.org/10.1016/j.trb.2003.09.001

    Article  Google Scholar 

  78. Branke J, Middendorf M, Noeth G, Dessouky M (2005) Waiting strategies for dynamic vehicle routing. Transp Sci 39(3):298–312. https://doi.org/10.1287/trsc.1040.0095

    Article  Google Scholar 

  79. Thomas BW (2007) Waiting strategies for anticipating service requests from known customer locations. Transp Sci 41(3):319–331. https://doi.org/10.1287/trsc.1060.0183

    Article  Google Scholar 

  80. Ghiani G, Laporte G, Manni E, Musmanno R (2008) Waiting strategies for the dynamic and stochastic traveling salesman problem. Int J Oper Res 5(4):233–241

    MathSciNet  Google Scholar 

  81. Bent R, Van Hentenryck P (2007) Waiting and relocation strategies in online stochastic vehicle routing. In: Veloso M (ed) Proceedings of the 20th international joint conference on artifical intelligence (IJCAI-07), pp 1816–1821

  82. Branchini RM, Armentano VA, Lokketangen A (2009) Adaptive granular local search heuristic for a dynamic vehicle routing problem. Comput Oper Res 36(11):2955–2968. https://doi.org/10.1016/j.cor.2009.01.014

    Article  MATH  Google Scholar 

  83. Bent R, Van Hentenryck P (2007) Waiting and relocation strategies in online stochastic vehicle routing. In: IJCAI international joint conference on artificial intelligence, pp 1816–1821

  84. RamachandranPillai R, Arock M (2019) An adaptive spiking neural P system for solving vehicle routing problems. Arab J Sci Eng 1–17

  85. Larsen A (2000) The dynamic vehicle routing problem. Kgs. Lyngby, Technical University of Denmark (DTU). IMM-PHD, No. 2000-73, Denmark

  86. Haitao X, Pan P, Duan F (2018) Dynamic vehicle routing problems with enhanced ant colony optimization. Discrete Dyn Nat Soc. https://doi.org/10.1155/2018/1295485

    Article  MATH  Google Scholar 

  87. Ionescu M, Pǎun G, Yokomori T (2006) Spiking neural P systems. Fundam Inf 71(2):279–308

    MathSciNet  MATH  Google Scholar 

  88. Qi F, Liu M (2018) Optimization spiking neural P system for solving TSP. https://doi.org/10.1007/978-3-319-73447-7_71

  89. Yang XS (2009) Firefly algorithms for multimodal optimization. In: Stochastic algorithms: foundations and applications. Springer, pp 169–178

  90. Yang XS (2008) Nature-inspired metaheuristic algorithms. Luniver Press, London

    Google Scholar 

  91. Zeng X, Song T, Pan L, Zhang X (2011), Spiking Neural P systems for arithmetic operations. In: 2011 sixth international conference on bio-inspired computing: theories and applications, Penang, pp 296–301. https://doi.org/10.1109/bic-ta.2011.42

  92. Paun G, Pérez-Jiménez M, Rozenberg G (2006) Spike trains in spiking neural P systems. Int J Found Comput Sci 17:975–1002. https://doi.org/10.1142/S0129054106004212

    Article  MathSciNet  MATH  Google Scholar 

  93. Rong H, Wu T, Pan L, Zhang G (2018) Spiking Neural P systems: theoretical results and applications: essays. Dedicated to Mario de Jesús Pérez-Jiménez on the Occasion of His 70th Birthday. https://doi.org/10.1007/978-3-030-00265-7_20

  94. Metta VP, Kelemenová A (2015) Sorting using spiking neural P systems with anti-spikes and rules on synapses. In: Rozenberg G, Salomaa A, Sempere J, Zandron C (eds) Membrane computing. CMC 2015. Lecture Notes in Computer Science, vol 9504. Springer, Cham

  95. Zein M, Adl A, Ella Hassanien A (2018), Spiking neural P grey wolf optimization system: Novel strategies for solving non-determinism problems, Expert systems with applications, volume 121, 2019, pp 204–220. https://doi.org/10.1016/j.eswa.2018.12.029

  96. Xu H, Pu P, Duan F (2018) Dynamic vehicle routing problems with enhanced ant colony optimization. Discrete Dyn Nat Soc. https://doi.org/10.1155/2018/1295485

    Article  MATH  Google Scholar 

  97. Khouadjia MR, Sarasola B, Alba E, Jourdan L, Talbi E-G (2012) A comparative study between dynamic adapted PSO and VNS for the vehicle routing problem with dynamic requests. Appl Soft Comput 12(4):1426–1439

    Article  Google Scholar 

  98. Hanshar FT, Ombuki-Berman BM (2007) Dynamic vehicle routing using genetic algorithms. Appl Intell 27(1):89–99

    Article  Google Scholar 

  99. Bell JE, McMullen PR (2004) Ant colony optimization techniques for the vehicle routing problem. Adv Eng Inf 18(1):41–48

    Article  Google Scholar 

  100. Yu B, Yang ZZ, Yao BZ (2011) A hybrid algorithm for vehicle routing problem with time windows. Expert Syst Appl 38(1):435–441. https://doi.org/10.1016/j.eswa.2010.06.082

    Article  Google Scholar 

  101. Tan CK, Chew YH, Lee LH (2006) A hybrid multiobjective evolutionary algorithm for solving vehicle routing problem with time windows. Comput Optim Appl 34:115–151. https://doi.org/10.1007/s10589005-3070-3

    Article  MathSciNet  MATH  Google Scholar 

  102. Dong W, Zhou K, Qi H, He C, Zhang J (2018) A tissue P system based evolutionary algorithm for multi-objective VRPTW. Swarm Evolut Comput 39:310–322. https://doi.org/10.1016/j.swevo.2017.11.001

    Article  Google Scholar 

  103. Zhao H (2007) A multi-objective genetic programming approach to developing Pareto optimal decision trees. Decis Support Syst 43(3):809826. https://doi.org/10.1016/j.dss.2006.12.011

    Article  Google Scholar 

  104. Haynes W (2013) Holm’s method. In: Dubitzky W, Wolkenhauer O, Cho KH, Yokota H (eds) Encyclopedia of systems biology. Springer, New York

    Google Scholar 

  105. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1(1):3–18. https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  106. Chen SY, Feng Z, Yi X (2017) A general introduction to adjustment for multiple comparisons. J Thor Disease 9(6):1725–1729. https://doi.org/10.21037/jtd.2017.05.34

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Resmi RamachandranPillai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RamachandranPillai, R., Arock, M. Spiking neural firefly optimization scheme for the capacitated dynamic vehicle routing problem with time windows. Neural Comput & Applic 33, 409–432 (2021). https://doi.org/10.1007/s00521-020-04983-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-04983-8

Keywords

Navigation