Skip to main content
Log in

A Gaussian Process Related to the Mass Spectrum of the Near-Critical Ising Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Let \(\Phi ^h(x)\) with \(x=(t,y)\) denote the near-critical scaling limit of the planar Ising magnetization field. We take the limit of \(\Phi ^h\) as the spatial coordinate y scales to infinity with t fixed and prove that it is a stationary Gaussian process X(t) whose covariance function K(t) is the Laplace transform of a mass spectral measure \(\rho \) of the relativistic quantum field theory associated to the Euclidean field \(\Phi ^h.\)X and K should provide a useful tool for studying the mass spectrum; e.g., the small distance/time behavior of the covariance functions of \(\Phi ^h\) and X(t) shows that \(\rho \) is finite but has infinite first moment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bjorken, J.D., Drell, S.D.: Relativistic Quantum Fields. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  2. Borthwick, D., Garibaldi, S.: Did a 1-dimensional magnet detect a 248-dimensional Lie algebra? Not. Am. Math. Soc. 58, 1055–1066 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Bricmont, J., Fröhlich, J.: Statistical mechanical methods in particle structure analysis of lattice field theories II. Scalar and surface models. Commun. Math. Phys. 98, 553–578 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  4. Camia, F., Garban, C., Newman, C.M.: Planar Ising magnetization field I. Uniqueness of the critical scaling limit. Ann. Probab. 43, 528–571 (2015)

    Article  MathSciNet  Google Scholar 

  5. Camia, F., Garban, C., Newman, C.M.: Planar Ising magnetization field II. Properties of the critical and near-critical scaling limits. Ann. Inst. Henri Poincaré Probab. Stat. 52, 146–161 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. Camia, F., Jiang, J., Newman, C.M.: Exponential decay for the near-critical scaling limit of the planar Ising model. Commun. Pure Appl. Math. 73, 1371–1405 (2020)

    Article  Google Scholar 

  7. Camia, F., Jiang, J., Newman, C.M.: FK-Ising coupling applied to near-critical planar models. Stoch. Process. Appl. 130, 560–583 (2020)

    Article  MathSciNet  Google Scholar 

  8. Chelkak, D., Hongler, C., Izyurov, K.: Conformal invariance of spin correlations in the planar Ising model. Ann. Math. 181, 1087–1138 (2015)

    Article  MathSciNet  Google Scholar 

  9. Delfino, G.: Integrable field theory and critical phenomena: the Ising model in a magnetic field. J. Phys. A 37, R45–R78 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  10. Durrett, R.: Probability: Theory and Examples, 3rd edn. Duxbury, Belmont (2005)

    MATH  Google Scholar 

  11. Fernique, X.: Continuité des processus Gaussiens. C. R. Acad. Sci. Paris 258, 6058–6060 (1964)

    MathSciNet  MATH  Google Scholar 

  12. Folland, G.B.: Real Analysis, Modern Techniques and Their Applications, 2nd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  13. Furlan, M., Mourrat, J.-C.: A tightness criterion for random fields, with application to the Ising model. Electron. J. Probab. 22, 1–29 (2017)

    Article  MathSciNet  Google Scholar 

  14. Glimm, J., Jaffe, A.: Quantum Physics: A Functional Integral Point of View, 2nd edn. Springer, Berlin (1987)

    Book  Google Scholar 

  15. Griffiths, R.B., Hurst, C.A., Sherman, S.: Concavity of magnetization of an Ising ferromagnet in a positive external field. J. Math. Phys. 11, 790–795 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  16. Hamedani, G.G., Tata, M.N.: On the determination of the bivariate normal distribution from distributions of linear combinations of the variables. Am. Math. Mon. 82, 913–915 (1975)

    Article  MathSciNet  Google Scholar 

  17. Lee, T.D., Yang, C.N.: Statistical theory of equations of state and phase transition. II. Lattice gas and Ising model. Phys. Rev. 87, 410–419 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  18. Marcus, M.B., Shepp, L.A.: Continuity of Gaussian processes. Trans. Am. Math. Soc. 151, 377–391 (1970)

    Article  MathSciNet  Google Scholar 

  19. McCoy, B., Maillard, J.M.: The importance of the Ising model. Prog. Theor. Phys. 127, 791–817 (2012)

    Article  ADS  Google Scholar 

  20. Montray, I., Münster, G.: Quantum Fields on a Lattice. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  21. Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys. 74, 119–128 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  22. Newman, C.M., Wright, A.L.: An invariance principle for certain dependent sequences. Ann. Probab. 9, 671–675 (1981)

    Article  MathSciNet  Google Scholar 

  23. Newman, C.M., Wu, W.: Lee–Yang property and Gaussian multiplicative chaos. Commun. Math. Phys. 369, 153–170 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  24. Osterwalder, K., Schrader, R.: Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31, 83–112 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  25. Zamolodchikov, A.B.: Integrals of motion and S-matrix of the (scaled) \(T=T_c\) Ising model with magnetic field. Int. J. Mod. Phys. 04, 4235–4248 (1989)

    Article  ADS  Google Scholar 

  26. Zamolodchikov, A.B.: Integrable field theory from conformal field theory. In: Jimbo, M., Miwa, T., Tsuchiya, A. (eds.) Advanced Studies in Pure Mathematics, Integrable Systems in Quantum Field Theory and Statistical Mechanics, vol. 19, pp. 641–674. Mathematical Society of Japan, Tokyo (1989)

    Google Scholar 

Download references

Acknowledgements

The research of CMN was supported in part by US-NSF Grant DMS-1507019 and that of JJ by STCSM Grant 17YF1413300. The authors thank Tom Spencer for some useful discussions related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Jiang.

Additional information

Communicated by Hal Tasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: \(\Phi ^h\) Paired with a 1-d Delta Function

In [5], it was shown that \(\Phi ^h(f)\) is a well-defined random variable for any f in the Sobolev space \(\mathcal {H}^{-3}(\mathbb {R}^2).\) This was later generalized in [13] to any f in the Besov space \(\mathcal {B}_{p,q}^{-\frac{1}{8}-\epsilon ,\text {loc}}(\mathbb {R}^2)\) where \(\epsilon >0\) and \(p,q\in [1,\infty ].\) But the test function \(1_{[-L,L]}(y)\delta _s(t)\) is in neither of those two spaces. The next lemma justifies the pairing of \(\Phi ^h\) with such a test function.

Lemma A

For any \(\epsilon >0,\) let \(g_{\epsilon }\) be the probability density function of \(N(0,\epsilon )\) (i.e., Gaussian with mean 0 and variance \(\epsilon ).\) For any \(f\in L^1(\mathbb {R})\cap L^2(\mathbb {R}),\) we have that

$$\begin{aligned} \{\Phi ^h(f(y)g_{\epsilon }(t)); \epsilon >0\} \text { is a Cauchy sequence in }L^2. \end{aligned}$$
(53)

Remark A

Lemma A holds for more general probability density functions than \(g_{\epsilon };\) we choose a Gaussian distribution to simplify the proof.

Proof

For \(f\in L^1(\mathbb {R})\cap L^2(\mathbb {R}),\) let

$$\begin{aligned} h(u):=\int _{\mathbb {R}} f(y)f(u+y) dy. \end{aligned}$$
(54)

Our assumption on f implies \(|h(u)|\le \Vert f\Vert _2\) for each \(u\in \mathbb {R}.\) Therefore,

$$\begin{aligned} \int _{\mathbb {R}}|h(u)|H(0,u)du<\infty , \end{aligned}$$
(55)

where the last inequality follows from the exponential decay of H(0, u) for large |u| and \(H(0,|u|)=O(|u|^{-1/4})\) as \(|u|\downarrow 0\) (see Theorem 2).

In the next calculation we use the fact that the random variables \(\Phi ^h(f(y)g_{\epsilon }(t))\) and \(\Phi ^h(f(y)g_{\tilde{\epsilon }}(t))\) have the same expectation, which can be proved with an argument analogous to that used in the proof of Theorem 2 to show that \(\mathbb {E}^h\left( \Phi ^h\left( f_{\epsilon }(t,y)\right) \right) \) is independent of \(\epsilon \):

$$\begin{aligned}&\mathbb {E}\left[ \Phi ^h(f(y)g_{\epsilon }(t))-\Phi ^h(f(y)g_{\tilde{\epsilon }}(t))\right] ^2\nonumber \\&\quad =\mathbb {E}\left[ \Phi ^h\left( f(y)g_{\epsilon }(t)-f(y)g_{\tilde{\epsilon }}(t)\right) \right] ^2\nonumber \\&\quad = \int _{\mathbb {R}^2}\int _{\mathbb {R}^2}\left[ f(y_1)g_{\epsilon }(t_1)-f(y_1)g_{\tilde{\epsilon }}(t_1)\right] \left[ f(y_2)g_{\epsilon }(t_2)-f(y_2)g_{\tilde{\epsilon }}(t_2)\right] \nonumber \\&\qquad \times H(t_2-t_1, y_2-y_1)dt_2 dy_2 dt_1 dy_1. \end{aligned}$$
(56)

By the change of variables \(u=y_2-y_1, v=t_2-t_1, w=y_1, x=t_1,\) this equals

$$\begin{aligned} \int _{\mathbb {R}^2}h(u)H(v,u)\left[ G_{\epsilon ,\epsilon }(v)+G_{\tilde{\epsilon },\tilde{\epsilon }}(v)-G_{\epsilon ,\tilde{\epsilon }}(v)-G_{\tilde{\epsilon },\epsilon }(v)\right] dv du, \end{aligned}$$
(57)

where h(u) is as in (54) and \(G_{\epsilon ,\tilde{\epsilon }}:=g_{\epsilon }*g_{\tilde{\epsilon }}\) is the convolution (we have used the fact that \(g_{\epsilon }\) is even). Since \(g_{\epsilon }\) is the density of \(N(0,\epsilon ),\) we have

$$\begin{aligned} G_{\epsilon ,\tilde{\epsilon }}=g_{\epsilon +\tilde{\epsilon }}. \end{aligned}$$
(58)

Another change of variables and using the explicit formula for \(g_{\epsilon }\) give that (57) equals

$$\begin{aligned} \int _{\mathbb {R}^2} \frac{h(u)}{\sqrt{2\pi }}e^{-v^2/2}\left[ H(\sqrt{2\epsilon }v,u)+H(\sqrt{2\tilde{\epsilon }}v,u)-2H(\sqrt{\epsilon +\tilde{\epsilon }}v,u)\right] dv du. \end{aligned}$$
(59)

Note that by the monotonicity of H

$$\begin{aligned} \left| [H(\sqrt{2\epsilon }v,u)+H(\sqrt{2\tilde{\epsilon }}v,u)-2H(\sqrt{\epsilon +\tilde{\epsilon }}v,u)\right| \le 4H(0,u). \end{aligned}$$
(60)

For any \(\eta >0,\) by (55), one may choose \(\xi >0\) and \(N>\xi \) such that

$$\begin{aligned}&4\int _{ \{u:|u|<\xi \text { or } |u|>N\} }\int _{\mathbb {R}}\frac{|h(u)|}{\sqrt{2\pi }}e^{-v^2/2}H(0,u) dv du \nonumber \\&\quad + 4\int _{\mathbb {R}}\int _{\{v: |v|>N\}}\frac{|h(u)|}{\sqrt{2\pi }}e^{-v^2/2}H(0,u) dv du<\eta /2. \end{aligned}$$
(61)

Since

$$\begin{aligned}&\left| H(\sqrt{2\epsilon }v,u)+H(\sqrt{2\tilde{\epsilon }}v,u)-2H(\sqrt{\epsilon +\tilde{\epsilon }}v,u)\right| \nonumber \\&\quad = \left| H(0,\sqrt{u^2+2\epsilon v^2})+H(0,\sqrt{u^2+2\tilde{\epsilon } v^2})-2H(0,\sqrt{u^2+(\epsilon +\tilde{\epsilon }) v^2})\right| \end{aligned}$$

is uniformly continuous on \(\{(u,v):\xi \le |u|\le N, |v|\le N\},\) we have for all small enough \(\epsilon \) and \(\tilde{\epsilon },\)

$$\begin{aligned}&\int _{\{u:\xi \le |u|\le N\}}\int _{\{v:|v|\le N\}}\frac{|h(u)|}{\sqrt{2\pi }}e^{-v^2/2}\Big | H(\sqrt{2\epsilon }v,u)+H(\sqrt{2\tilde{\epsilon }}v,u)\nonumber \\&\quad -\, 2H(\sqrt{\epsilon +\tilde{\epsilon }}v,u)\Big | dvdu < \eta /2. \end{aligned}$$
(62)

This combined with (59)–(61) completes the proof of the lemma. \(\square \)

Appendix B: Large Distance/Time Behavior of H and K

In this Appendix, we first derive the large t behavior of \(\hat{H}(t)\) [recall the definition of \(\hat{H}\) in (37)], based on the conjecture that the mass spectrum has an upper gap \((m_1,m_1+\epsilon )\) for some \(\epsilon >0.\) Then, based on this behavior, we prove the (first order) large time behavior for K.

Proposition A

Suppose that \(\tilde{\rho }\left( (m_1,m_1+\epsilon )\right) =0\) for some \(\epsilon >0\) where \(\tilde{\rho }\) is defined in (29). Then there exists a constant \(C_3\in (0,\infty )\) such that

$$\begin{aligned} \lim _{t\rightarrow \infty }\frac{\hat{H}(t)}{t^{-1/2}e^{-m_1t}}=C_3:=\tilde{\rho }\left( \{m_1\}\right) \sqrt{\pi /(2m_1)}. \end{aligned}$$
(63)

Proof

Using the Källén–Lehmann spectral representation [see (29) and (30)], we have for \(t>0\) that

$$\begin{aligned} \hat{H}(t)= \int _{0}^{\infty } \int _{-\infty }^{\infty }\frac{e^{-\sqrt{m^2+p^2}t}}{2\sqrt{m^2+p^2}}dpd\tilde{\rho }(m). \end{aligned}$$
(64)

Recall that the support of \(\tilde{\rho }\) is in \([m_1,\infty ).\) Under the assumption that \(\tilde{\rho }\left( (m_1,m_1+\epsilon )\right) =0\) for some \(\epsilon >0,\) we have

$$\begin{aligned} \hat{H}(t)= \tilde{\rho }\left( \{m_1\}\right) \int _{-\infty }^{\infty }\frac{e^{-\sqrt{m_1^2+p^2}t}}{2\sqrt{m_1^2+p^2}}dp+\int _{m_1+\epsilon }^{\infty } \int _{-\infty }^{\infty }\frac{e^{-\sqrt{m^2+p^2}t}}{2\sqrt{m^2+p^2}}dpd\tilde{\rho }(m). \end{aligned}$$
(65)

By the change of variables \(y=\sqrt{1+p^2/m^2},\) we get

$$\begin{aligned} \int _{-\infty }^{\infty }\frac{e^{-\sqrt{m^2+p^2}t}}{2\sqrt{m^2+p^2}}dp&=\int _{1}^{\infty }\frac{e^{-mty}}{\sqrt{y^2-1}}dy\end{aligned}$$
(66)
$$\begin{aligned}&=\int _{1}^{\infty }\frac{e^{-mty}}{\sqrt{2(y-1)}}dy+\int _{1}^{\infty }\left[ \frac{1}{\sqrt{y^2-1}}-\frac{1}{\sqrt{2(y-1)}}\right] e^{-mty}dy. \end{aligned}$$
(67)

Using the inequality

$$\begin{aligned} \sqrt{y+1}-\sqrt{2}\le \frac{y-1}{2\sqrt{2}}\quad \text {for all } y\ge 1, \end{aligned}$$
(68)

we have

$$\begin{aligned} \left| \int _{1}^{\infty }\left[ \frac{1}{\sqrt{y^2-1}}-\frac{1}{\sqrt{2(y-1)}}\right] e^{-mty}dy\right|&\le \frac{1}{8}\int _1^{\infty }\sqrt{y-1}e^{-mty}dy\nonumber \\&=\frac{1}{8}t^{-3/2}e^{-mt}\int _0^{\infty }y^{1/2}e^{-my}dy. \end{aligned}$$
(69)

On the other hand, the change of variables \(u=\sqrt{t(y-1)}\) gives

$$\begin{aligned} \int _1^{\infty }\frac{e^{-mty}}{\sqrt{2(y-1)}}dy&=(2t)^{-1/2}e^{-mt}\int _0^{\infty }2e^{-mu^2}du\nonumber \\&=\sqrt{\pi /(2m)}t^{-1/2}e^{-mt}. \end{aligned}$$
(70)

Combining (66)–(70), we get that

$$\begin{aligned} \lim _{t\rightarrow \infty }\frac{\int _{-\infty }^{\infty }\frac{e^{-\sqrt{m_1^2+p^2}t}}{2\sqrt{m_1^2+p^2}}dp}{t^{-1/2}e^{-m_1t}}=\sqrt{\pi /(2m_1)}. \end{aligned}$$
(71)

By (66) and (70), we have

$$\begin{aligned} \int _{m_1+\epsilon }^{\infty } \int _{-\infty }^{\infty }\frac{e^{-\sqrt{m^2+p^2}t}}{2\sqrt{m^2+p^2}}dpd\tilde{\rho }(m)&\le \int _{m_1+\epsilon }^{\infty } \int _{1}^{\infty }\frac{e^{-mty}}{\sqrt{2(y-1)}}dyd\tilde{\rho }(m)\nonumber \\&= \int _{m_1+\epsilon }^{\infty }\sqrt{\pi /(2m)}t^{-1/2}e^{-mt}d\tilde{\rho }(m). \end{aligned}$$
(72)

Therefore,

$$\begin{aligned}&\limsup _{t\rightarrow \infty } \left[ \int _{m_1+\epsilon }^{\infty } \int _{-\infty }^{\infty }\frac{e^{-\sqrt{m^2+p^2}t}}{2\sqrt{m^2+p^2}}dpd\tilde{\rho }(m)\right] /\left[ t^{-1/2}e^{-m_1t}\right] \nonumber \\&\quad \le \limsup _{t\rightarrow \infty } \int _{m_1+\epsilon }^{\infty }\sqrt{\pi /(2m)}e^{-(m-m_1)t}d\tilde{\rho }(m). \end{aligned}$$
(73)

It is not hard to prove that the last limit is 0 by using the fact that \(\int _{m_1}^{\infty }(1/m)d\tilde{\rho }(m)<\infty \) (see Corollary 1). This, (65) and (71) complete the proof of the proposition. \(\square \)

The power-law correction to the exponential decay in (63) is usually known as Ornstein–Zernike decay (see, e.g., [3, Sect. VII]). It may be possible to prove (63) directly without the assumption of an upper mass gap. Based on this, we have the following large time behavior of K.

Proposition B

Suppose (63) holds. Then we have

$$\begin{aligned} \lim _{t\rightarrow \infty }\frac{K(t)}{e^{-m_1t}}=C_3\sqrt{2\pi /m_1}=\pi \tilde{\rho }\left( \{m_1\}\right) /m_1. \end{aligned}$$
(74)

We need the following ancillary lemma.

Lemma B

Let \(m>0.\) For any \(\alpha ,\beta \) satisfying \(0<\beta<1/2<\alpha <3/4,\) we have

$$\begin{aligned} \lim _{t\rightarrow \infty }\frac{\int _0^{\infty }(u^2+t^2)^{-1/4}e^{-m\sqrt{u^2+t^2}}du}{e^{-mt}}=\lim _{t\rightarrow \infty }\frac{\int _{t^{\alpha }}^{t^{\beta }}e^{-m\sqrt{u^2+t^2}}du}{t^{1/2}e^{-mt}}=\sqrt{\frac{\pi }{2m}}. \end{aligned}$$
(75)

Proof

We first note that

$$\begin{aligned} \int _0^{t^{\beta }}(u^2+t^2)^{-1/4}e^{-m\sqrt{u^2+t^2}}du&\le \int _0^{t^{\beta }}t^{-1/2}e^{-m\sqrt{u^2+t^2}}du\nonumber \\&\le t^{-1/2}\int _0^{t^{\beta }} e^{-m\left( t^{-1/2}u+\sqrt{1-t^{-1}}t\right) }du\nonumber \\&=\frac{1}{m}e^{-m\sqrt{t^2-t}}\left[ 1-e^{-mt^{\beta -1/2}}\right] \nonumber \\&\le t^{\beta -1/2}e^m e^{-mt}, \end{aligned}$$
(76)

where we have used the bound (which can be proved by the Cauchy–Schwarz inequality)

$$\begin{aligned} \sqrt{u^2+t^2}\ge t^{-1/2}u+\sqrt{1-t^{-1}}t\quad \text {for all } u,\quad t>0 \end{aligned}$$
(77)

in the second inequality, and

$$\begin{aligned} 1-e^{-y}\le y\quad \text {for all }y\ge 0,\quad \sqrt{t^2-t}\ge t-1\quad \text { for all } t\ge 1 \end{aligned}$$
(78)

in the last inequality. Using the same inequalities, one can show that

$$\begin{aligned} \int _{t^{\alpha }}^{\infty }(u^2+t^2)^{-1/4}e^{-m\sqrt{u^2+t^2}}du&\le \int _{t^{\alpha }}^{\infty }t^{-1/2}e^{-m\sqrt{u^2+t^2}}du\nonumber \\&\le t^{-1/2}\int _{t^{\alpha }}^{\infty } e^{-m\left( t^{-1/2}u+\sqrt{1-t^{-1}}t\right) }du\nonumber \\&=\frac{1}{m}e^{-m\sqrt{t^2-t}}e^{-mt^{\alpha -1/2}}\nonumber \\&\le \frac{e^m}{m}e^{-mt^{\alpha -1/2}}e^{-mt}. \end{aligned}$$
(79)

Combining (76) and (79), we get

$$\begin{aligned} \lim _{t\rightarrow \infty }\frac{\int _0^{\infty }(u^2+t^2)^{-1/4}e^{-m\sqrt{u^2+t^2}}du}{e^{-mt}}=\lim _{t\rightarrow \infty }\frac{\int _{t^{\beta }}^{t^{\alpha }}(u^2+t^2)^{-1/4}e^{-m\sqrt{u^2+t^2}}du}{e^{-mt}} \end{aligned}$$
(80)

provided the limit on the LHS exists. It is easy to see that

$$\begin{aligned} (t^{2\alpha }+t^2)^{-1/4}\int _{t^{\beta }}^{t^{\alpha }}e^{-m\sqrt{u^2+t^2}}du&\le \int _{t^{\beta }}^{t^{\alpha }}(u^2+t^2)^{-1/4}e^{-m\sqrt{u^2+t^2}}du\nonumber \\&\le (t^{2\beta }+t^2)^{-1/4}\int _{t^{\beta }}^{t^{\alpha }}e^{-m\sqrt{u^2+t^2}}du. \end{aligned}$$
(81)

This and (80) prove the first equality in the lemma provided the limit exists. By the Taylor expansion, one can show that there exist constants \(C_4, C_5\in (0,\infty )\) such that for any \(u\in [t^{\beta }, t^{\alpha }]\)

$$\begin{aligned} 1+\frac{u^2}{2t^2}-C_4\left( \frac{u}{t}\right) ^4\le \sqrt{1+(u/t)^2}\le 1+\frac{u^2}{2t^2}-C_5\left( \frac{u}{t}\right) ^4. \end{aligned}$$
(82)

Therefore,

$$\begin{aligned} e^{mC_5 t^{4\beta -3}}\int _{t^{\beta }}^{t^{\alpha }}e^{\frac{-mu^2}{2t}}du&\le \int _{t^{\beta }}^{t^{\alpha }}\exp \left( mt\left[ 1-\sqrt{1+(u/t)^2}\right] \right) du\nonumber \\&\le e^{mC_4 t^{4\alpha -3}}\int _{t^{\beta }}^{t^{\alpha }}e^{\frac{-mu^2}{2t}}du. \end{aligned}$$
(83)

By our assumption on \(\alpha \) and \(\beta ,\) this implies

$$\begin{aligned} \lim _{t\rightarrow \infty }\frac{\int _{t^{\alpha }}^{t^{\beta }} e^{-m\sqrt{u^2+t^2}}du}{t^{1/2}e^{-mt}}=\lim _{t\rightarrow \infty }\frac{\int _{t^{\beta }}^{t^{\alpha }}e^{\frac{-mu^2}{2t}}du}{t^{1/2}} \end{aligned}$$
(84)

if the limit on the LHS exists. Since

$$\begin{aligned}&\int _0^{t^{\beta }}e^{\frac{-mu^2}{2t}}du\le t^{\beta }\text { and } \nonumber \\&\int _{t^{\alpha }}^{\infty }e^{\frac{-mu^2}{2t}}du\le \int _{t^{\alpha }}^{\infty }\exp \left( \frac{-m(t^{\alpha })^{1/\alpha }u^{2-1/\alpha }}{2t}\right) du<\infty , \end{aligned}$$
(85)

we have

$$\begin{aligned} \lim _{t\rightarrow \infty }\frac{\int _{t^{\beta }}^{t^{\alpha }}e^{\frac{-mu^2}{2t}}du}{t^{1/2}}=\lim _{t\rightarrow \infty }\frac{\int _{0}^{\infty }e^{\frac{-mu^2}{2t}}du}{t^{1/2}}=\sqrt{\frac{\pi }{2m}}, \end{aligned}$$
(86)

where we have used the fact that \((1/\sqrt{2\pi t/m})e^{-mu^2/(2t)}\) is the density of N(0, t/m). \(\square \)

Proof of Proposition B

The limit (63) implies that, for any fixed \(\epsilon >0,\)

$$\begin{aligned} (C_3-\epsilon )r^{-1/2}e^{-m_1r}\le \hat{H}(r)\le (C_3+\epsilon )r^{-1/2}e^{-m_1r} \text { for all large }r. \end{aligned}$$
(87)

Lemma B and the definition of K [see (8)] imply that

$$\begin{aligned} (C_3-\epsilon )\sqrt{\frac{2\pi }{m}}\le \lim _{t\rightarrow \infty }\frac{K(t)}{e^{-m_1t}}\le (C_3+\epsilon )\sqrt{\frac{2\pi }{m}}. \end{aligned}$$
(88)

This completes the proof of the proposition by sending \(\epsilon \downarrow 0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camia, F., Jiang, J. & Newman, C.M. A Gaussian Process Related to the Mass Spectrum of the Near-Critical Ising Model. J Stat Phys 179, 885–900 (2020). https://doi.org/10.1007/s10955-020-02560-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02560-w

Keywords

Navigation