Skip to main content
Log in

The First Comprehensive Cohort of the Duchenne Muscular Dystrophy in Iranian Population: Mutation Spectrum of 314 Patients and Identifying Two Novel Nonsense Mutations

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Mutations in the dystrophin gene could cause Duchenne muscular dystrophy (DMD), which is the most common muscular disorder in pediatrics. Considering the growing evidence on appropriateness of gene therapies for DMD, precise genetic diagnosis seems essential. Hence, we conducted a study to determine mutational patterns in Iranian children with DMD. To detect all probable large mutations in the dystrophin gene, 314 DMD patients were evaluated using the multiplex ligation-dependent probe amplification (MLPA). Subjects who were MLPA-negative underwent the next generation sequencing (NGS) to identify potential point mutations. MLPA detected deletions (79.93%) and duplications (5.41%) along the dystrophin gene of 268 patients. Distribution of large mutations was heterogeneous and followed hotspot pattern throughout the gene. From 46 patients who were MLPA-negative, 43 exhibited point mutations including nonsense in 7.64%, frameshifts in 4.77%, splicing in 0.96%, and missense variations in 0.32% of participants. Most of the point mutations were located between exons 19 and 40. In three patients (1%), no mutation was found using either MLPA or NGS. Two subjects had novel nonsense mutations (L1675X and E1199X) in their dystrophin gene, which were considered as the possible reason for elimination of major domains of the gene. The results of this study provided invaluable information regarding the distribution of various large and small mutations in Iranian individuals with DMD. Besides, the novel nonsense mutations L1675X and E1199X were identified within the highly conserved residues, leading to elimination of significant domains of the dystrophin gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aartsma-Rus A, Ginjaar IB, Bushby K (2016) The importance of genetic diagnosis for Duchenne muscular dystrophy. J Med Genet 53(3):145–151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alame M, Lacourt D, Zenagui R, Mechin D, Danton F, Koenig M, Claustres M, Cossée M (2016) Implementation of a reliable next-generation sequencing strategy for molecular diagnosis of dystrophinopathies. J Mol Diagn 18(5):731–740

    CAS  PubMed  Google Scholar 

  • King N, Horrocks C, Brooks J (2018) Interviews in qualitative research. SAGE Publications Limited, London

  • Barzegar M, Habibi P, Bonyady M, Topchizadeh V, Shiva S (2015) Exon deletion pattern in duchene muscular dystrophy in north west of Iran. Iran J Child Neurol 9(1):42–48

    PubMed  PubMed Central  Google Scholar 

  • Beggs AH, Koenig M, Boyce FM, Kunkel LM (1990) Detection of 98% of DMD/BMD gene deletions by polymerase chain reaction. Hum Genet 86(1):45–48

    CAS  PubMed  Google Scholar 

  • Behjati S, Tarpey PS (2013) What is next generation sequencing? Arch Dis Child Educa Pract Ed 98(6):236–238

    Google Scholar 

  • Bladen CL, Rafferty K, Straub V, Monges S, Moresco A, Dawkins H, Roy A, Chamova T, Guergueltcheva V, Korngut L, Campbell C, Dai Y, Barišić N, Kos T, Brabec P, Rahbek J, Lahdetie J, Tuffery-Giraud S, Claustres M, Leturcq F, Ben Yaou R, Walter MC, Schreiber O, Karcagi V, Herczegfalvi A, Viswanathan V, Bayat F, de la caridad Guerrero Sarmiento I, Ambrosini A, Ceradini F, Kimura E, van den Bergen JC, Rodrigues M, Roxburgh R, Lusakowska A, Oliveira J, Santos R, Neagu E, Butoianu N, Artemieva S, Rasic VM, Posada M, Palau F, Lindvall B, Bloetzer C, Karaduman A, Topaloğlu H, Inal S, Oflazer P, Stringer A, Shatillo AV, Martin AS, Peay H, Flanigan KM, Salgado D, von Rekowski B, Lynn S, Heslop E, Gainotti S, Taruscio D, Kirschner J, Verschuuren J, Bushby K, Béroud C, Lochmüller H (2013) The TREAT-NMD Duchenne muscular dystrophy registries: conception, design, and utilization by industry and academia. Hum Mutat 34(11):1449–1457

    PubMed  Google Scholar 

  • Bladen CL, Salgado D, Monges S, Foncuberta ME, Kekou K, Kosma K, Dawkins H, Lamont L, Roy AJ, Chamova T, Guergueltcheva V, Chan S, Korngut L, Campbell C, Dai Y, Wang J, Barišić N, Brabec P, Lahdetie J, Walter MC, Schreiber-Katz O, Karcagi V, Garami M, Viswanathan V, Bayat F, Buccella F, Kimura E, Koeks Z, van den Bergen JC, Rodrigues M, Roxburgh R, Lusakowska A, Kostera-Pruszczyk A, Zimowski J, Santos R, Neagu E, Artemieva S, Rasic VM, Vojinovic D, Posada M, Bloetzer C, Jeannet PY, Joncourt F, Díaz-Manera J, Gallardo E, Karaduman AA, Topaloğlu H, el Sherif R, Stringer A, Shatillo AV, Martin AS, Peay HL, Bellgard MI, Kirschner J, Flanigan KM, Straub V, Bushby K, Verschuuren J, Aartsma-Rus A, Béroud C, Lochmüller H (2015) The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mutat 36(4):395–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Ma H, Zhang F, Chen L, Xing X, Wang S, Zhang X, Luo Y (2014) Screening of Duchenne muscular dystrophy (DMD) mutations and investigating its mutational mechanism in Chinese patients. PLoS One 9(9):e108038

    PubMed  PubMed Central  Google Scholar 

  • Cho A, Seong MW, Lim BC, Lee HJ, Byeon JH, Kim SS, Kim SY, Choi SA, Wong AL, Lee J, Kim JS, Ryu HW, Lee JS, Kim H, Hwang H, Choi JE, Kim KJ, Hwang YS, Hong KH, Park S, Cho SI, Lee SJ, Park H, Seo SH, Park SS, Chae JH (2017) Consecutive analysis of mutation spectrum in the dystrophin gene of 507 Korean boys with Duchenne/Becker muscular dystrophy in a single center. Muscle Nerve 55(5):727–734

    CAS  PubMed  Google Scholar 

  • Dardiotis E, Aloizou A-M, Siokas V, Patrinos GP, Deretzi G, Mitsias P, Aschner M, Tsatsakis A (2018) The role of microRNAs in patients with amyotrophic lateral sclerosis. J Mol Neurosci 66(4):617–628

    CAS  PubMed  Google Scholar 

  • Elhawary NA, Shawky RM, Hashem N (2004) Frameshift deletion mechanisms in Egyptian Duchenne and Becker muscular dystrophy families. Mol Cells 18(2):141–149

    CAS  PubMed  Google Scholar 

  • Flanagan SE, Patch A-M, Ellard S (2010) Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. Genet Test Mol Biomark 14(4):533–537

    CAS  Google Scholar 

  • Flanigan KM, Dunn DM, von Niederhausern A, Soltanzadeh P, Gappmaier E, Howard MT, Sampson JB, Mendell JR, Wall C, King WM, Pestronk A, Florence JM, Connolly AM, Mathews KD, Stephan CM, Laubenthal KS, Wong BL, Morehart PJ, Meyer A, Finkel RS, Bonnemann CG, Medne L, Day JW, Dalton JC, Margolis MK, Hinton VJ, the United Dystrophinopathy Project Consortium, Weiss RB (2009) Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. Hum Mutat 30(12):1657–1666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foster H, Popplewell L, Dickson G (2012) Genetic therapeutic approaches for Duchenne muscular dystrophy. Hum Gene Ther 23(7):676–687

    CAS  PubMed  Google Scholar 

  • Gao QQ, McNally EM (2011) The dystrophin complex: structure, function, and implications for therapy. Compr Physiol 5(3):1223–1239

    Google Scholar 

  • Hallwirth Pillay KD, Bill PL, Madurai S, Mubaiwa L, Rapiti P (2007) Molecular deletion patterns in Duchenne and Becker muscular dystrophy patients from KwaZulu Natal. J Neurol Sci 252(1):1–3

    CAS  PubMed  Google Scholar 

  • Hamzi K, Itto AB, Itri M, Nadifi S (2014) Prenatal diagnosis of BMD in Morocco: evolution and limits. J Mol Neurosci 52(4):459–460

    CAS  PubMed  Google Scholar 

  • Itto AB, Hamzi K, Bellayou H, Itri M, Slassi I, Nadifi S (2013) Evolution of molecular diagnosis of Duchenne muscular dystrophy. J Mol Neurosci 50(2):314–316

    PubMed  Google Scholar 

  • Iyombe-Engembe J-P, Tremblay JP (2017) The advances and challenges of gene therapy for Duchenne muscular dystrophy. J Genetic Med Gene Therapy 1:019–036

    Google Scholar 

  • Janssen B, Hartmann C, Scholz V, Jauch A, Zschocke J (2005) MLPA analysis for the detection of deletions, duplications and complex rearrangements in the dystrophin gene: potential and pitfalls. Neurogenetics. 6(1):29–35

    CAS  PubMed  Google Scholar 

  • Juan-Mateu J, Gonzalez-Quereda L, Rodriguez MJ, Baena M, Verdura E, Nascimento A, Ortez C, Baiget M, Gallano P (2015) DMD mutations in 576 dystrophinopathy families: a step forward in genotype-phenotype correlations. PLoS One 10(8):e0135189

    PubMed  PubMed Central  Google Scholar 

  • Khordadpoor-Deilamani F, Akbari MT, Nafissi S, Zamani G (2011) Dystrophin gene mutation analysis in Iranian males and females using multiplex polymerase chain reaction and multiplex ligation-dependent probe amplification methods. Genet Test Mol Biomark 15(12):893–899

    CAS  Google Scholar 

  • Li Y, Liu Z, OuYang S, Zhu Y, Wang L, Wu J (2016) Distribution of dystrophin gene deletions in a Chinese population. J Int Med Res 44(1):99–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang WC, Wang CH, Chou PC, Chen WZ, Jong YJ (2018) The natural history of the patients with Duchenne muscular dystrophy in Taiwan: a medical center experience. Pediatr Neonatol 59(2):176–183

    PubMed  Google Scholar 

  • Lorant J, Saury C, Schleder C, Robriquet F, Lieubeau B, Négroni E, Leroux I, Chabrand L, Viau S, Babarit C, Ledevin M, Dubreil L, Hamel A, Magot A, Thorin C, Guevel L, Delorme B, Péréon Y, Butler-Browne G, Mouly V, Rouger K (2018) Skeletal muscle regenerative potential of human MuStem cells following transplantation into injured mice muscle. Mol Ther 26(2):618–633

    CAS  PubMed  Google Scholar 

  • Ma P, Zhang S, Zhang H, Fang S, Dong Y, Zhang Y, Hao W, Wu S, Zhao Y (2018) Comprehensive genetic characteristics of dystrophinopathies in China. Orphanet J Rare Dis 13(1):109

    PubMed  PubMed Central  Google Scholar 

  • Madania A, Zarzour H, Jarjour RA, Ghoury I (2010) Combination of conventional multiplex PCR and quantitative real-time PCR detects large rearrangements in the dystrophin gene in 59% of Syrian DMD/BMD patients. Clin Biochem 43(10–11):836–842

    CAS  PubMed  Google Scholar 

  • Manjunath M, Kiran P, Preethish-Kumar V, Nalini A, Singh RJ, Gayathri N (2015) A comparative study of mPCR, MLPA, and muscle biopsy results in a cohort of children with Duchenne muscular dystrophy: a first study. Neurol India 63(1):58–62

    CAS  PubMed  Google Scholar 

  • Mohammed F, Elshafey A, Al-Balool H, Alaboud H, Al Ben Ali M, Baqer A et al (2018) Mutation spectrum analysis of Duchenne/Becker muscular dystrophy in 68 families in Kuwait: the era of personalized medicine. PLoS One 13(5):e0197205

    PubMed  PubMed Central  Google Scholar 

  • Muntoni F, Torelli S, Ferlini A (2003) Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol 2(12):731–740

    CAS  PubMed  Google Scholar 

  • Nouri N, Fazel-Najafabadi E, Salehi M, Hosseinzadeh M, Behnam M, Ghazavi MR et al (2014) Evaluation of multiplex ligation-dependent probe amplification analysis versus multiplex polymerase chain reaction assays in the detection of dystrophin gene rearrangements in an Iranian population subset. Adv Biomed Res 3:72

    PubMed  PubMed Central  Google Scholar 

  • Nowak KJ, Davies KE (2004) Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep 5(9):872–876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okubo M, Minami N, Goto K, Goto Y, Noguchi S, Mitsuhashi S, Nishino I (2016) Genetic diagnosis of Duchenne/Becker muscular dystrophy using next-generation sequencing: validation analysis of DMD mutations. J Hum Genet 61(6):483–489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okubo M, Goto K, Komaki H, Nakamura H, Mori-Yoshimura M, Hayashi YK, Mitsuhashi S, Noguchi S, Kimura E, Nishino I (2017) Comprehensive analysis for genetic diagnosis of dystrophinopathies in Japan. Orphanet J Rare Dis 12(1):149

    PubMed  PubMed Central  Google Scholar 

  • Perkins KJ, Davies KE (2018) Alternative utrophin mRNAs contribute to phenotypic differences between dystrophin-deficient mice and Duchenne muscular dystrophy. FEBS Lett 592(11):1856–1869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rininsland F, Reiss J (1994) Microlesions and polymorphisms in the Duchenne/Becker muscular dystrophy gene. Hum Genet 94(2):111–116

    CAS  PubMed  Google Scholar 

  • Ryder S, Leadley RM, Armstrong N, Westwood M, de Kock S, Butt T, Jain M, Kleijnen J (2017) The burden, epidemiology, costs and treatment for Duchenne muscular dystrophy: an evidence review. Orphanet J Rare Dis 12(1):79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sbiti A, El Kerch F, Sefiani A (2002) Analysis of dystrophin gene deletions by multiplex PCR in Moroccan patients. J Biomed Biotechnol 2(3):158–160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz M, Duno M (2004) Improved molecular diagnosis of dystrophin gene mutations using the multiplex ligation-dependent probe amplification method. Genet Test 8(4):361–367

    CAS  PubMed  Google Scholar 

  • Siokas V, Aslanidou P, Aloizou A-M, Peristeri E, Stamati P, Liampas I, et al (2020) Does the CD33 rs3865444 polymorphism confer susceptibility to Alzheimer’s disease? J Mol Neurosci 1–10

  • Sokratous M, Dardiotis E, Bellou E, Tsouris Z, Michalopoulou A, Dardioti M, Siokas V, Rikos D, Tsatsakis A, Kovatsi L, Bogdanos DP, Hadjigeorgiou GM (2018) CpG island methylation patterns in relapsing-remitting multiple sclerosis. J Mol Neurosci 64(3):478–484

    CAS  PubMed  Google Scholar 

  • Suh MR, Lee KA, Kim EY, Jung J, Choi WA, Kang SW (2017) Multiplex ligation-dependent probe amplification in X-linked recessive muscular dystrophy in Korean subjects. Yonsei Med J 58(3):613–618

    PubMed  PubMed Central  Google Scholar 

  • Tennyson CN, Klamut HJ, Worton RG (1995) The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet 9(2):184–190

    CAS  PubMed  Google Scholar 

  • Torella A, Trimarco A, Blanco Fdel V, Cuomo A, Aurino S, Piluso G et al (2010) One hundred twenty-one dystrophin point mutations detected from stored DNA samples by combinatorial denaturing high-performance liquid chromatography. J Mol Diagn 12(1):65–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tuffery-Giraud S, Beroud C, Leturcq F, Yaou RB, Hamroun D, Michel-Calemard L et al (2009) Genotype-phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD-DMD database: a model of nationwide knowledgebase. Hum Mutat 30(6):934–945

    CAS  PubMed  Google Scholar 

  • Ulgenalp A, Giray O, Bora E, Hizli T, Kurul S, Sagin-Saylam G et al (2004) Deletion analysis and clinical correlations in patients with Xp21 linked muscular dystrophy. Turk J Pediatr 46(4):333–338

    PubMed  Google Scholar 

  • Vainzof M, Ayub-Guerrieri D, Onofre PC, Martins PC, Lopes VF, Zilberztajn D et al (2008) Animal models for genetic neuromuscular diseases. J Mol Neurosci 34(3):241–248

    CAS  PubMed  Google Scholar 

  • Wang X, Wang Z, Yan M, Huang S, Chen TJ, Zhong N (2008) Similarity of DMD gene deletion and duplication in the Chinese patients compared to global populations. Behav Brain Funct 4:20

    PubMed  PubMed Central  Google Scholar 

  • Yamagishi H, Kato S, Hiraishi Y, Ishihara T, Hata J, Matsuo N, Takano T (1996) Identification of carriers of Duchenne/Becker muscular dystrophy by a novel method based on detection of junction fragments in the dystrophin gene. J Med Genet 33(12):1027–1031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zamani G, Heidari M, Azizi Malamiri R, Ashrafi MR, Mohammadi M, Shervin Badv R, Hosseini SA, Salehi S, Shahrokhi A, Qorbani M, Fathi MR (2016) The quality of life in boys with Duchenne muscular dystrophy. Neuromuscul Disord 26(7):423–427

    PubMed  Google Scholar 

  • Zhang A, Uaesoontrachoon K, Shaughnessy C, Das JR, Rayavarapu S, Brown KJ, Ray PE, Nagaraju K, van den Anker JN, Hoffman EP, Hathout Y (2015) The use of urinary and kidney SILAM proteomics to monitor kidney response to high dose morpholino oligonucleotides in the mdx mouse. Toxicol Rep 2:838–849

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the patients and their parents for their cooperation. We also would like to thank Ramak Heidari, Neda Anisi, and Samira Anisi, the Iranian Muscular Dystrophy Association members for their assistance in the process of data collection.

Funding

This research is supported by a grant from Tehran University of Medical Sciences (TUMS). The funding organization had no role in the design and conduct of the study; in the collection, analysis, and interpretation of the data; or in the preparation, review, or approval of the article and the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Heidari.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani, G., Hosseini Bereshneh, A., Azizi Malamiri, R. et al. The First Comprehensive Cohort of the Duchenne Muscular Dystrophy in Iranian Population: Mutation Spectrum of 314 Patients and Identifying Two Novel Nonsense Mutations. J Mol Neurosci 70, 1565–1573 (2020). https://doi.org/10.1007/s12031-020-01594-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-020-01594-9

Keywords

Navigation