Skip to main content
Log in

Phase stability and optoelectronic characteristics of Ba1−xBexS: a DFT-based simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structural stability and optoelectronic properties of the ternary Ba1−xBexS alloys along with the pure binary compounds BaS and BeS in the rock-salt (B1) and zinc-blende (B3) phases were investigated by the density functional theory (DFT) within the full-potential linearized augmented plane wave (FP-LAPW) method implemented in the Wien2k package. The generalized gradient approximation of Wu and Cohen (WC-GGA) was used for the exchange-correlation potential (Vxc) to compute the equilibrium structural parameters, lattice constant (a), and bulk modulus (B). In addition to the GGA approach, the modified Becke-Johnson potential of Tran and Blaha (TB-mBJ) scheme coupled with the spin-orbit interaction was used to calculate the band gap energies. Results reveal that BaS, Ba0.75Be0.25S, and Ba0.5Be0.5S compounds are stable in the rock-salt phase, while Ba0.25Be0.75S and BeS are found to be stable in the zinc-blende phase. The computed results for the band structures and optical constants are compared with other available theoretical calculations and experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lin GQ, Gong H, Wu P (2005) Electronic properties of barium chalcogenides from first-principles calculations: tailoring wide-band-gap II-VI semiconductors. Phys Rev B 71(8):085203–085208. https://doi.org/10.1103/PhysRevB.71.085203

    Article  CAS  Google Scholar 

  2. Bouhemadou A, Khenata R, Zegrar F, Sahnoun M, Baltache H, Reshak AH (2006) Ab initio study of structural, electronic, elastic and high pressure properties of barium chalcogenides. Comput Mater Sci 38:263–270. https://doi.org/10.1016/j.commatsci.2006.03.001

    Article  CAS  Google Scholar 

  3. Drablia S, Meradji H, Ghemid S, Nouet G, El Haj Hassan F (2009) First principles investigation of barium chalcogenide ternary alloys. Comput Mater Sci 46:376–382. https://doi.org/10.1016/j.commatsci.2009.03.013

    Article  CAS  Google Scholar 

  4. Heng KL, Chua SJ, Wu P (2000) Prediction of semiconductor material properties by the properties of their constituent chemical elements. Chem Mater 12(6):1648–1653. https://doi.org/10.1021/cm9906194

    Article  CAS  Google Scholar 

  5. Yamaoka S, Shimomura O, Nakazawa H, Fukunaga O (1980) Pressure-induced phase transformation in BaS. Solid State Commun 33(1):87–89. https://doi.org/10.1016/0038-1098(80)90702-4

    Article  CAS  Google Scholar 

  6. Grzybowski TA, Ruoff AL (1983) High-pressure phase transition in BaSe. Phys Rev B 27(10):6502–6503. https://doi.org/10.1103/physrevb.27.6502

    Article  CAS  Google Scholar 

  7. Grzybowski TA, Ruoff AL (1984) Band-overlap metallization of BaTe. Phys Rev Lett 53(5):489–492. https://doi.org/10.1103/physrevlett.53.489

    Article  CAS  Google Scholar 

  8. Ruoff AL, Grzybowski TA (1985) Solid state physics under pressure. In: Minomura S (ed) Terra Scientic, Tokyo

  9. Weir ST, Vohra YK, Ruoff AL (1987) Pressure-induced metallization of BaSe. Phys Rev B 35(2):874–876. https://doi.org/10.1103/physrevb.35.874

    Article  CAS  Google Scholar 

  10. Weir ST, Vohra YK, Ruoff AL (1986) High-pressure phase transitions and the equations of state of BaS and BaO. Phys Rev B Condens Matter 33(6):4221–4226. https://doi.org/10.1103/physrevb.33.4221

    Article  CAS  PubMed  Google Scholar 

  11. Kaneko Y, Morimoto K, Koda T (1982) Optical properties of alkaline earth chalcogenides. J Phys Soc Jpn 51:2247–2254. https://doi.org/10.1143/JPSJ.51.2247

    Article  CAS  Google Scholar 

  12. Narayana C, Nesamony VJ, Ruoff AL (1997) Phase transformation of BeS and equation-of-state studies to 96 GPa. Phys Rev B 56:14338. https://doi.org/10.1103/PhysRevB.56.14338

    Article  CAS  Google Scholar 

  13. Yim WM, Dismakes JB, Stofko EJ, Paff RJ (1972) Synthesis and some properties of BeTe, BeSe and BeS. J Phys Chem Solids 33(2):501–505. https://doi.org/10.1016/0022-3697(72)90032-7

    Article  CAS  Google Scholar 

  14. Waag A, Litz T, Fischer F, Lugauer HJ, Baron T, Schiill K, Zehnder U, Gerhard T, Lunza U, Keim M, Reuschera G, Landwehr G (1998) Novel beryllium containing II-VI compounds: basic properties and potential applications. J Cryst Growth 184/185:l–10. https://doi.org/10.1016/S0022-0248(98)80283-2

    Article  Google Scholar 

  15. Zollweg RJ (1958) Optical absorption and photoemission of barium and strontium oxides, sulfides, selenides, and tellurides. Phys Rev 111(1):113–119. https://doi.org/10.1103/physrev.111.113

    Article  CAS  Google Scholar 

  16. Kaneko Y, Morimoto K, Koda T (1983) Optical properties of alkaline-earth chalcogenides. II. Vacuum ultraviolet reflection spectra in the synchrotron radiation region of 4–40 eV. J Phys Soc Jpn. 52(12):4385–4396. https://doi.org/10.1143/jpsj.52.4385

    Article  CAS  Google Scholar 

  17. Khenata R, Sahnoun M, Baltache H, Rérat M, Rached D, Driz M, Bouhafs B (2006) Structural, electronic, elastic and high-pressure properties of some alkaline-earth chalcogenides: an ab initio study. Phys B: Cond Matt 371(1):12–19. https://doi.org/10.1016/j.physb.2005.08.046

    Article  CAS  Google Scholar 

  18. Tuncel E, Colakoglu K, Deligoz E, Ciftci YO (2009) A first-principles study on the structural, elastic, vibrational, and thermodynamical properties of BaX (X = S, Se, and Te). J Phys Chem Solids 70(2):371–378. https://doi.org/10.1016/j.jpcs.2008.11.002

    Article  CAS  Google Scholar 

  19. Drablia S, Meradji H, Ghemid S, Boukhris N, Bouhafs B, Nouet G (2009) Electronic and optical properties of BaO, BaS, BaSe, BaTe and BaPo compounds under hydrostatic pressure. Mod Phys Lett B 23(26):3065–3079. https://doi.org/10.1142/S0217984909021235

    Article  CAS  Google Scholar 

  20. Pourghazi A, Dadsetani M (2005) Electronic and optical properties of BaTe, BaSe and BaS from first principles. Physica B 370(1–4):35–45. https://doi.org/10.1016/j.physb.2005.08.032

    Article  CAS  Google Scholar 

  21. Gökoğlu G (2008) First principles study of barium chalcogenides. J Phys Chem Solids 69(11):2924–2927. https://doi.org/10.1016/j.jpcs.2008.08.012

    Article  CAS  Google Scholar 

  22. El Haj Hassan F, Akbarzadeh H (2006) First-principles elastic and bonding properties of barium chalcogenides. Comput Mater Sci 38(2):362–368. https://doi.org/10.1016/j.commatsci.2005.09.012

    Article  CAS  Google Scholar 

  23. Waag A, Fischer F, Lugauer HJ, Litz T, Gerhard T, Nürnberger J, Lunz U, Zehnder U, Ossau W, Landwehr G, Roos B, Richter H (1997) Beryllium chalcogenides for ZnSe-based light emitting devices. Mater Sci Eng B43(1–3):65–70. https://doi.org/10.1016/s0921-5107(96)01911-3

    Article  CAS  Google Scholar 

  24. Luo H, Ghandehari K, Greene RG, Ruoff AL, Trail SS, DiSalvo FJ (1995) Phase transformation of BeSe and BeTe to the NiAs structure at high pressure. Phys Rev B 52(10):7058–7064. https://doi.org/10.1103/physrevb.52.7058

    Article  CAS  Google Scholar 

  25. Pandey R, Sivaraman S (1991) Spectroscopic properties of defects in alkaline-earth sulfides. J Phys Chem Solids 52(1):211–225. https://doi.org/10.1016/0022-3697(91)90066-9

    Article  CAS  Google Scholar 

  26. Asano S, Yamashita N, Nakao Y (1978) Luminescence of the Pb2+-ion dimer center in CaS and CaSe phosphors. Phys Status Solidi B 89(2):663–673. https://doi.org/10.1002/pssb.2220890242

    Article  CAS  Google Scholar 

  27. Wilmers K, Wethkamp T (1999) Ellipsometric studies of BexZn1−xSe between 3 eV and 25 eV. Phys Rev B 59(15):10071–10075. https://doi.org/10.1103/physrevb.59.10071

    Article  CAS  Google Scholar 

  28. Kalpana G, Pari G, Mookerjee A, Bhattacharyya AK (1998) Ab initio electronic band structure calculations for beryllium chalcogenides. Int J Mod Phys B 12(19):1975–1984. https://doi.org/10.1142/s0217979298001149

    Article  CAS  Google Scholar 

  29. Okoye CMI (2004) Structural, electronic, and optical properties of beryllium monochalcogenides. Eur Phys J B 39(1):5–17. https://doi.org/10.1140/epjb/e2004-00164-3

    Article  CAS  Google Scholar 

  30. El Haj Hassan F, Akbarzadeh H (2006) Ground state properties and structural phase transition of beryllium chalcogenides. Comput Mater Sci 35(4):423–431. https://doi.org/10.1016/j.commatsci.2005.02.010

    Article  CAS  Google Scholar 

  31. Berghout A, Zaoui A, Hugel J (2006) Fundamental state quantities and high-pressure phase transition in beryllium chalcogenides. J Phys Condens Matter 18(46):10365–10375. https://doi.org/10.1088/0953-8984/18/46/005

    Article  CAS  PubMed  Google Scholar 

  32. Heciri D, Beldi L, Drablia S, Meradji H, Derradji NE, Belkhir H, Bouhafs B (2007) First-principles elastic constants and electronic structure of beryllium chalcogenides BeS, BeSe and BeTe. Comput Mater Sci 38(4):609–617. https://doi.org/10.1016/j.commatsci.2006.04.003

    Article  CAS  Google Scholar 

  33. Munjal N, Sharma V, Sharma G, Vyas V, Sharma BK, Lowther JE (2011) Ab-initiostudy of the electronic and elastic properties of beryllium chalcogenides BeX (X=S, Se and Te). Phys Scr 84(3):035704. https://doi.org/10.1088/0031-8949/84/03/035704

    Article  CAS  Google Scholar 

  34. Guo L, Hu G, Zhang S, Feng W, Zhang Z (2013) Structural, elastic, electronic and optical properties of beryllium chalcogenides BeX (X=S, Se, Te) with zinc-blende structure. J Alloys Compd 561:16–22. https://doi.org/10.1016/j.jallcom.2013.01.144

    Article  CAS  Google Scholar 

  35. Yu Y, Liu D, Chen J, Ji J, Long J (2014) First-principles investigations on structural, electronic and elastic properties of BeSe under high pressure. Solid State Sci 28:35–40. https://doi.org/10.1016/j.solidstatesciences.2013.12.009

    Article  CAS  Google Scholar 

  36. Rai DP, Ghimire MP, Thapa RK (2014) A DFT study of BeX (X = S, se, Te) semiconductor: modified Becke Johnson (mBJ) potential. Semiconductors 48(11):1411–1422. https://doi.org/10.1134/s1063782614110244

    Article  CAS  Google Scholar 

  37. Ji X, Yu Y, Ji J, Long J, Chen J, Liu D (2015) Theoretical studies of the pressure-induced phase transition and elastic properties of BeS. J Alloys Compd 623:304–310. https://doi.org/10.1016/j.jallcom.2014.10.151

    Article  CAS  Google Scholar 

  38. Drablia S, Boukhris N, Boulechfar R, Meradji H, Ghemid S, Ahmed R, Bin Omran S, El Haj Hassan F, Khenata R (2017) Ab initio calculations of the structural, electronic, thermodynamic and thermal properties of BaSe1−xTex alloys. Phys Scr 92(10):105701–105709. https://doi.org/10.1088/1402-4896/aa842e

    Article  CAS  Google Scholar 

  39. Chelli S, Touam S, Hamioud L, Meradji H, Ghemid S, El Haj HF (2015) Ab-initio study of structural, elastic, electronic and thermodynamic properties of BaxSr1−xS ternary alloys. Mater Sci Pol 33(4):879–886. https://doi.org/10.1515/msp-2015-0108

    Article  CAS  Google Scholar 

  40. Chelli S, Meradji H, Amara Korba S, Ghemid S, El Haj HF (2014) First principles calculations of structural, electronic, thermodynamic and thermal properties of BaxSr1−xTe ternary alloys. Int J Mod Phys B 28(4):1450041–1450058. https://doi.org/10.1142/s0217979214500416

    Article  Google Scholar 

  41. Baaziz H, Charifi Z, El Haj Hassan F, Hashemifar SJ, Akbarzadeh H (2006) FP-LAPW investigations of Zn1–xBexS, Zn1–xBexSe and Zn1–xBexTe ternary alloys. Phys Status Solidi B 243(6):1296–1305. https://doi.org/10.1002/pssb.200541481

    Article  CAS  Google Scholar 

  42. Bensaid D, Ameri M, Benseddik N, Mir A, Bouzouira NE, Benzoudji F (2014) Band gap engineering of Cd1-xBexSe alloys. Int J Met 2014:1–7. https://doi.org/10.1155/2014/286393

    Article  CAS  Google Scholar 

  43. Sabir B, Noor NA, Rashid M, Din FU, Ramay SM, Mahmood A (2018) Bandgap engineering to tune the optical properties of Bex Mg1−x X (X = S, Se, Te) alloys. Chin Phys B 27(1):016101–016110. https://doi.org/10.1088/1674-1056/27/1/016101

    Article  CAS  Google Scholar 

  44. Madsen GKH, Blaha P, Schwarz K, Sjöstedt E, Nordström L (2001) Efficient linearization of the augmented plane-wave method. Phys Rev B 64:195134–195144. https://doi.org/10.1103/PhysRevB.64.195134

    Article  CAS  Google Scholar 

  45. Schwarz K, Blaha P, Madsen GKH (2002) Electronic structure calculations of solids using the Wien2k package for material sciences. Comput Phys Commun 147(1–2):71–76. https://doi.org/10.1016/S0010-4655(02)00206-0

    Article  Google Scholar 

  46. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871. https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  47. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  48. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2K: an augmented plane wave plus local orbitals program for calculating crystal properties, Vienna

  49. Wu Z, Cohen RE (2006) More accurate generalized gradient approximation for solids. Phys Rev B 73(23):235116–235122. https://doi.org/10.1103/PhysRevB.73.235116

    Article  CAS  Google Scholar 

  50. Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with semi local exchange-correlation potential. Phys Rev Lett 102(22):226401–226405. https://doi.org/10.1103/PhysRevLett.102.226401

    Article  CAS  PubMed  Google Scholar 

  51. Amimour B, Slimani M, Sifi C, Khémissi R, Meradji H, Ghemid S, Omran SB, Khenata R (2017) Computational investigations of the band structure and thermodynamic properties of calcium-doped BaS using the FP-LAPW approach. Chin J Phys 55(2):367–377. https://doi.org/10.1016/j.cjph.2017.02.002

    Article  CAS  Google Scholar 

  52. Bhattacharjee R, Chattopadhyaya S (2017) Effects of barium (Ba) doping on structural, electronic and optical properties of binary strontium chalcogenide semiconductor compounds -a theoretical investigation using DFT based FP-LAPW approach. Mater Chem Phys 199:295–312. https://doi.org/10.1016/j.matchemphys.2017.06.057

    Article  CAS  Google Scholar 

  53. Feng Z, Hu H, Cui S, Wang W (2009) Electronic structure calculations for BaSxSe1-x alloys. Physica B 404(16):2107–2110. https://doi.org/10.1016/j.physb.2008.11.201

    Article  CAS  Google Scholar 

  54. Ameri M, Touia A, Khachai H, Mahdjoub Z, Chekroun MZ, Slamani A (2012) Ab initio study of structural and electronic properties of barium chalcogenide alloys. Mater Sci Appl 3(9):612–618. https://doi.org/10.4236/msa.2012.39088

    Article  CAS  Google Scholar 

  55. Benkaddour I, Khachai H, Chiker F, Benosman N, Benkaddour Y, Murtaza G, Omran SB, Khenata R (2015) Ab initio study of the structural, electronic, and thermal properties of BaS1−xTex alloy. Int J Thermophys 36:1640–1653. https://doi.org/10.1007/s10765-015-1908-1

    Article  CAS  Google Scholar 

  56. Wang KL, Gao SP (2018) Phonon dispersions, band structures, and dielectric functions of BeO and BeS polymorphs. J Phys Chem Solids 118:242–247. https://doi.org/10.1016/j.jpcs.2018.03.013

    Article  CAS  Google Scholar 

  57. Rached D, Rabah M, Benkhettou N, Khenata R, Soudini B, Douri YA, Baltache H (2006) First-principle study of structural, electronic and elastic properties of beryllium chalcogenides BeS, BeSe and BeTe. Comput Mater Sci 37(3):292–299. https://doi.org/10.1016/j.commatsci.2005.08.005

  58. Laref S, Laref A (2012) Thermal properties of BeX (X = S, Se and Te) compounds from ab initio quasi-harmonic method. Comput Mater Sci 51(1):135–140. https://doi.org/10.1016/j.commatsci.2011.07.016

  59. Dabhi S, Mankad V, Prafulla KJ (2014) A first principles study of phase stability, bonding, electronic and lattice dynamical properties of beryllium chalcogenides at high pressure. J Alloys Compd 617:905–914. https://doi.org/10.1016/j.jallcom.2014.08.035

  60. Ali R, Mohammad S, Ullah H, Khan SA, Uddin H, Khan M, Khan NU (2013) The structural, electronic and optical response of IIA–VIA compounds through the modified Becke–Johnson potential. Physica B 410(1):93–98. https://doi.org/10.1016/j.physb.2012.09.050

  61. Zhang X, Ying C, Shi G, Li Z (2011) A first-principles study on the structural, lattice dynamical and thermodynamic properties of beryllium chalcogenides. Physica B 406(24):4666–4670. https://doi.org/10.1016/j.physb.2011.09.056

  62. Khenata R, Bouhemadou A, Hichour M, Baltache H, Rached D, Rérat M (2006) Elastic and optical properties of BeS, BeSe and BeTe under pressure. Solid State Electron 50(7–8):1382–1388. https://doi.org/10.1016/j.sse.2006.06.019

  63. Fluegel B, Francoeur S, Mascarenhas A, Tixier S, Young EC, Tiedje T (2006) Giant spin-orbit bowing in GaAs1−xBix. Phys Rev Lett 97:067205–067205. https://doi.org/10.1103/physrevlett.97.067205

    Article  CAS  PubMed  Google Scholar 

  64. Zhang Y, Mascarenhas A, Wang LW (2005) Similar and dissimilar aspects of III−V semiconductors containing Bi versus N. Phys Rev B Matt 71(15):155201–155205. https://doi.org/10.1103/physrevb.71.155201

    Article  Google Scholar 

  65. Dalven R (1973) Empirical relation between energy gap and lattice constant in cubic semiconductors. Phys Rev B 8(12):6033–6034. https://doi.org/10.1103/PhysRevB.8.6033

  66. Carlsson AE, Wilkins JW (1984) Band-overlap metallization of BaS, BaSe, and BaTe. PhysRev B 29(10):5836–5839. https://doi.org/10.1103/PhysRevB.29.5836

  67. Fox M (2002) Optical properties of solids. Oxford University Press, Oxford

  68. Ambrosch DA, Sofo JO (2006) Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput Phys Commun 175(1):1–14. https://doi.org/10.1016/j.cpc.2006.03.005

  69. Harbeke G (1972) In optical properties of solids. In: Abelès F (ed) North-Holland, Amsterdam

  70. Lines ME (1990) Bond-orbital theory of linear and nonlinear electronic response in ionic crystals. I Linear response. Phys Rev B 41(6):3372–3382. https://doi.org/10.1103/PhysRevB.41.3372

  71. Drofenik M, Ažman A (1972) The dynamic ionic charge of NaCl type crystals CaS, SrS. BaS J Phys Chem Solids 33(3):761–763. https://doi.org/10.1016/0022-3697(72)90087-X

  72. Dadsetani M, Pourghazi A (2006) The dielectric constant of barium mono-chalcogenides and their improved band gap results. Opt Commun 266(2):562–564. https://doi.org/10.1016/j.optcom.2006.05.018

    Article  CAS  Google Scholar 

  73. Debnath B, Debbarma M, Ghosh D, Chanda S, Bhattacharjee R, Chattopadhyaya S (2019) Optoelectronic properties of CaxBa1-xX (X=S, Se and Te) alloys: a first principles investigation employing modified Becke-Johnson (mBJ) functional. Int. J. Mod Phys B 33:1950042–1950079. https://doi.org/10.1142/S0217979219500425

  74. Sifi C, Meradji H, Silmani M, Labidi S, Ghemid S, Hanneche EB, El Haj HF (2009) First principle calculations of structural, electronic, thermodynamic and optical properties of Pb1−xCaxS, Pb1−xCaxSe and Pb1−xCaxTe ternary alloys. J Phys Condens Matter 21(19):195401–195050. https://doi.org/10.1088/0953-8984/21/19/195401

  75. Hervé PJL, Vandamme LKJ (1995) Empirical temperature dependence of the refractive index of semiconductors. J Appl Phys 77(10):5476–5477. https://doi.org/10.1063/1.359248

  76. Othman M, Kasap E, Korozlu N (2010) Ab-initio investigation of structural, electronic and optical properties of InxGa1-xAs, GaAs1-yPy ternary and InxGa1-xAs1-yPy quaternary semiconductor alloys. J Alloys Compd 496(1–2):226–233. https://doi.org/10.1016/j.jallcom.2009.12.109

Download references

Acknowledgments

Authors acknowledge the help of Prof. Hamad R. Jappor from the College of Education for Pure Sciences, University of Babylon, Iraq, for his careful reading of the paper.

Funding

The author S. Bin Omran acknowledges the financial support by the Deanship of Scientific Research at King Saud University for funding the work through the Research Group project number RG-1440-106.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Meradji or Xiaotian Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagui, S., Bendjeddou, H., Meradji, H. et al. Phase stability and optoelectronic characteristics of Ba1−xBexS: a DFT-based simulation. J Mol Model 26, 147 (2020). https://doi.org/10.1007/s00894-020-04370-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04370-z

Keywords

Navigation