Skip to main content

Advertisement

Log in

Synthesis and Characterization of Pyrogallol Capped Silver Nanoparticles and Evaluation of Their In Vitro Anti-Bacterial, Anti-cancer Profile Against AGS Cells

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The current research was aimed to carry out the synthesis and characterization of silver nanoparticles (AgNPs) from the Acacia nilotica leaf extract mediated compound pyrogallol (py). The py-AgNPs were evaluated for in vitro antioxidant, antimicrobial, and biofilm activities against Helicobacter pylori (H. pylori). Further, the apoptotic induction of human gastric adenocarcenoma (AGS) cells was also investigated. Characterization of py-AgNPs was evaluated by using Fourier transform infrared spectroscopy (FT-IR), High-resolution transmission electron microscopy (HR-TEM), Scanning electron microscopy (SEM), Zeta potential, dynamic light scattering (DLS), X-ray diffraction (XRD) and UV–visible spectrometry. The average size of py-AgNPs was 22.68–55.16 nm in range, confirmed by HR-TEM. The clear H. pylori biofilm and bacterial inhibition were observed by increasing the concentration. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on AGS cells were revealed that the increasing py-AgNPs level, significantly decreases the cell viability by increased apoptosis. The cell cycle arrest was observed. These results indicate that py-AgNPs have a vital function as an anti-H. pylori and anti-gastric cancer inhibitor and could be further used in the development of nanomedicines to counter lethal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D. Kalaimurugan, P. Sivasankar, K. Lavanya, M. S. Shivakumar, and S. Venkatesan (2019). Antibacterial and larvicidal activity of Fusarium proliferatum (YNS2) whole cell biomass mediated copper nanoparticles. J. Clust. Sci. 30, 1071–1080. https://doi.org/10.1007/s10876-019-01568-x.

    Article  CAS  Google Scholar 

  2. P. Sivasankar, S. Poongodi, P. Seedevi, D. Kalaimurugan, M. Sivakumar, and S. Loganathan (2019). Nanoparticles from Actinobacteria: a potential target to antimicrobial therapy. Curr. Pharm. Des. 25, 2626. https://doi.org/10.2174/1381612825666190709221710.

    Article  CAS  PubMed  Google Scholar 

  3. Cancer-World Health Organization. https://www.who.int/news-room/factsheets/detail/cancer Accessed March 21, 2019.

  4. S. Kienesberger and E. L. Zechner (2017). Helicobacter pylori. Ref. Module Biomed. Sci.. https://doi.org/10.1016/B978-0-12-801238-3.99201-8.

    Article  Google Scholar 

  5. C. Y. Kao, B. S. Sheu, and J. J. Wu (2016). Helicobacter pylori infection: an overview of bacterial virulence factors and pathogenesis. Biomed. J. 39, 14–23. https://doi.org/10.1016/j.bj.2015.06.002.

    Article  PubMed  PubMed Central  Google Scholar 

  6. F. Iwanczak and B. Iwanczak (2012). Treatment of Helicobacter pylori infection in the aspect of increasing antibiotic resistance. Adv. Clin. Exp. Med. 21, 671–680.

    PubMed  Google Scholar 

  7. S. H. Lee and B. H. Jun (2019). Silver nanoparticles: synthesis and application for nanomedicine. Int. J. Mol. Sci. 17, E865. https://doi.org/10.3390/ijms20040865.

    Article  CAS  Google Scholar 

  8. A. Moshfegh, A. Jalali, A. Salehzadeh, and A. Jozani (2019). Biological synthesis of silver nanoparticles by cell-free extract of Polysiphonia algae and their anticancer activity against breast cancer MCF-7 cell lines. Micro Nano Lett. 14, (5), 581–584. https://doi.org/10.1049/mnl.2018.5260.

    Article  CAS  Google Scholar 

  9. S. Fahimirad, F. Ajalloueian, and M. Ghorbanpour (2019). Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. Ecotoxicol. Environ. Saf. 30, 260–278. https://doi.org/10.1016/j.ecoenv.2018.10.017.

    Article  CAS  Google Scholar 

  10. S. W. Kim, Y. W. Han, S. T. Lee, H. J. Jeong, S. H. Kim, I. H. Kim, S. O. Lee, D. G. Kim, S. H. Kim, S. Z. Kim, and W. H. Park (2008). A superoxide anion generator, pyrogallol, inhibits the growth of HeLa cells via cell cycle arrest and apoptosis. Mol. Carcinogen.. https://doi.org/10.1002/mc.20369.

    Article  Google Scholar 

  11. S. Revathi, F. L. Hakkim, N. R. Kumar, H. A. Bakshi, L. Rashan, M. Al-Buloshi, S. S. Hasson, M. Krishnan, F. Javid, and K. Nagarajan (2018). Induction of HT–29 colon cancer cells apoptosis by pyrogallol with growth inhibiting efficacy against drug-resistant Helicobacter pylori. Anticancer Agents Med. Chem. 18, 1875–1884. https://doi.org/10.2174/1871520618666180806104902.

    Article  CAS  PubMed  Google Scholar 

  12. L. Boyanova (2005). Activity of Bulgarian propolis against 94 Helicobacter pylori strains in vitro by agar–well diffusion, agar dilution, and disc diffusion methods. J. Med. Microbiol. 54, 481–483. https://doi.org/10.1099/jmm.0.45880-0.

    Article  PubMed  Google Scholar 

  13. F. Bugli, V. Palmieri, R. Torelli, M. Papi, M. de Spirito, M. Cacaci, S. Galgano, L. Masucci, F. Sterbini, A. Vella, R. Graffeo, B. Posteraro, and M. Sanguinetti (2016). In vitro effect of clarithromycin and alginate lyase against Helicobacter pylori biofilm. Biotechnol Prog. 32, 1584–1591. https://doi.org/10.1002/btpr.2339.

    Article  CAS  PubMed  Google Scholar 

  14. S. Niharika, P. Amrita, P. Asmitaand, and G. Gunjan (2016). Inhibition of quorum-sensing-mediated biofilm formation in Cronobacter sakazakii strains. Microbiology 162, 1708–1714. https://doi.org/10.1099/mic.0.000342.

    Article  Google Scholar 

  15. M. Govindappa, R. Channabasava, K. S. Kumar, and K. C. Pushpalatha (2013). Antioxidant activity and phytochemical screening of crude endophytes extracts of Tabebuia argentea. Bur K Sch Am J Plant Sci. 4, 1641–1652.

    Article  Google Scholar 

  16. M. Yadav, A. Yadav, and J. P. Yadav (2014). In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. Asian Pac. J. Trop. Med. 7, S256–S261.

    Article  Google Scholar 

  17. I. Inkielewicz-Stepniak, M. J. Santos-Martinez, C. Medina, and M. W. Radomski (2014). Pharmacological and toxicological effects of co-exposure of human gingival fibroblasts to silver nanoparticles and sodium fluoride. Int. J. Nanomed. 9, (2014), 1677–1687. https://doi.org/10.2147/IJN.S59172.eCollection.

    Article  Google Scholar 

  18. Q. Saquib, A. A. Al-Khedhairy, M. A. Siddiqui, F. M. Abou-Tarboush, A. Azam, and J. Musarrat (2012). Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells. Toxicol. In Vitro. 26, 351–361. https://doi.org/10.1016/j.tiv.2011.12.011.

    Article  CAS  PubMed  Google Scholar 

  19. A. Moores and F. Goettmann (2006). The plasmon band in noblemetal nanoparticles: an introduction to theory and applications. NJC. 30, 1121–1132.

    Article  CAS  Google Scholar 

  20. J. M. Pitark, V. M. Silkin, E. V. Chulkov, and P. M. Echenique (2005). Surface plasmons in metallic structures. J. Optic. Pure. Appl. Optic. 7, 73–84.

    Article  Google Scholar 

  21. M. Amin, F. Anwar, M. R. Janjua, M. A. Iqbal, and U. Rashid (2012). Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: characterization, antimicrobial, and urease inhibitory activities against Helicobacter pylori. Int. J. Mol. Sci. 13, 9923. https://doi.org/10.3390/ijms13089923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. R. Anjali, S. Palanisamy, M. Vinosha, M. Thenmozhi, P. Rajasekar, T. Marudhupandi, P. Kumar, P. Boomi, and M. P. Narayanan (2018). Phyto–mediated synthesis of silver nanoparticles using fucoidan isolated from Spatoglossum asperum and assessment of antibacterial activities. J. Photochem. Photobiol. B. 185, 117–125. https://doi.org/10.1016/j.jphotobiol.2018.05.031.

    Article  CAS  Google Scholar 

  23. K. Gogoi, J. P. Saikia, and B. K. Konwar (2013). Immobilizing silver nanoparticles (SNP) on Musa balbisiana cellulose. Colloids Surf B. Biointerfaces. 102, 136–138.

    Article  CAS  Google Scholar 

  24. Y. Zhao, Y. Jiang, and Y. Fang (2006). Spectroscopy property of Ag nanoparticles. Acta A. 65, 1003–1006.

    Article  Google Scholar 

  25. S. K. Sivaraman, I. Elango, S. Kumar, and V. Santhanam (2009). A green protocol for room temperature synthesis of silver nanoparticles in seconds. Curr. Sci. 97, 1055–1099.

    CAS  Google Scholar 

  26. D. Prabhu, C. Arulvasu, G. Babu, R. Manikandan, and P. Srinivasan (2013). Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth–inhibitory effect on human colon cancer cell line HCT15. Process Biochem. 48, 317–324. https://doi.org/10.1016/j.procbio.2012.12.013.

    Article  CAS  Google Scholar 

  27. S. Jain and M. Mehata (2017). Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci. Rep. 7, 15867. https://doi.org/10.1038/s41598-017-15724-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. R. Kalaivani, M. Maruthupandy, T. Muneeswaran, A. H. Beevi, M. Anand, C. M. Ramakritinan, and A. K. Kumaraguru (2018). Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications. Front. Lab. Med. 2, (1), 30–35. https://doi.org/10.1016/j.flm.2018.04.002.

    Article  Google Scholar 

  29. A. Sudha, J. Jeyakanthan, and P. Srinivasan (2017). Green synthesis of silver nanoparticles using Lippia nodiflora aerial extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Resour.-Effic. Tech. 3, 506–515. https://doi.org/10.1016/j.reffit.2017.07.002.

    Article  Google Scholar 

  30. Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52, 662–668. https://doi.org/10.1002/1097-4636(20001215)52:4%3c662:aid-jbm10%3e3.0.co;2-3.

    Article  CAS  PubMed  Google Scholar 

  31. T. Hamouda, A. Myc, B. Donovan, A. Shih, J. D. Reuter, and J. R. Baker (2001). A novel surfactant nanoemulsion with a unique non–irritant topical antimicrobial activity against bacteria enveloped viruses and fungi. Microbiol. Res. 156, 1–7. https://doi.org/10.1078/0944-5013-00069.

    Article  CAS  PubMed  Google Scholar 

  32. J. S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, and Y. K. Kim (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine (Lond) 3, 95–101. https://doi.org/10.1016/j.nano.2006.12.001.

    Article  CAS  Google Scholar 

  33. J. Premkumar, T. Sudhakar, A. Dhakal, J. Shrestha, S. Krishnakumar, and P. Balashanmugam (2018). Synthesis of silver nanoparticles (AgNPs) from Cinnamon against bacterial pathogens. Biocat. Agric. Biotechnol. 15, 311–316. https://doi.org/10.1016/j.bcab.2018.06.005.

    Article  Google Scholar 

  34. R. Balachandar, P. Gurumoorthy, N. Karmegam, H. Barabadi, R. Subbaiya, K. Anand, P. Boomi, and M. Saravanan (2019). Plant-mediated synthesis, characterization and bactericidal potential of emerging silver nanoparticles using stem extract of Phyllanthus pinnatus: a recent advance in phytonanotechnology. J. Clust. Sci. 30, (6), 1481–1488. https://doi.org/10.1007/s10876-019-01591-y.

    Article  CAS  Google Scholar 

  35. D. Davies (2003). Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2, 114–122.

    Article  CAS  Google Scholar 

  36. H. Yonezawa, T. Osaki, S. Kurata, M. Fukuda, H. Kawakami, K. Ochiai, T. Hanawa, and S. Kamiya (2009). Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC. Microbiol. 9, 1–12. https://doi.org/10.1186/1471-2180-9-197.

    Article  CAS  Google Scholar 

  37. A. V. Mariadoss, V. Ramachandran, V. Shalini, B. Agilan, J. H. Franklin, K. Sanjay, Y. G. Alaa, M. A. Tawfiq, and D. Ernest (2019). Green synthesis, characterization and antibacterial activity of silver nanoparticles by Malus domestica and its cytotoxic effect on (MCF-7) cell line. Microb. Pathog. 135, 103609. https://doi.org/10.1016/j.micpath.2019.103609.

    Article  CAS  PubMed  Google Scholar 

  38. H. Barabadi, M. A. Mahjoub, B. Tajani, A. Ahmadi, Y. Junejo, and M. Saravanan (2019). Emerging theranostic biogenic silver nanomaterials for breast cancer: a systematic review. J. Clust. Sci. 30, (2), 259–279. https://doi.org/10.1007/s10876-018-01491-7.

    Article  CAS  Google Scholar 

  39. S. Salehi, S. A. Shandiz, F. Ghanbar, M. R. Darvish, M. S. Ardestani, A. Mirzaie, and M. Jafari (2016). Photosynthesis of silver nanoparticles using Artemisia marschalliana sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. Int. J. Nanomed. 11, 1835–1846. https://doi.org/10.2147/ijn.s99882.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Taiwan Experience Education Program, National Pingtung University, Taiwan, for providing laboratory facilities and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagarajan Kayalvizhi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 345 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sampath, G., Shyu, D.J.H., Rameshkumar, N. et al. Synthesis and Characterization of Pyrogallol Capped Silver Nanoparticles and Evaluation of Their In Vitro Anti-Bacterial, Anti-cancer Profile Against AGS Cells. J Clust Sci 32, 549–557 (2021). https://doi.org/10.1007/s10876-020-01813-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01813-8

Keywords

Navigation