Skip to main content
Log in

Rapid and Sensitive Spectrophotometry Method Based on Gold Nanoparticles for Trace Determination of Benzotriazole in Aqueous Solutions

  • Published:
Journal of Applied Spectroscopy Aims and scope

An innovative approach was developed to determine benzotriazole (BTA) in aqueous solutions. This method was based on surface plasmon resonance (SPR) property of gold nanoparticles (AuNPs). The reaction between gold nanoparticles and benzotriazole occurred. Then, benzotriazole was determined by spectrophotometry. Also, transmission electron microscopy (TEM) was used to show aggregation of gold nanoparticles in the presence of BTA. The effect of various parameters such as pH, contact time, concentration of gold nanoparticles, amount of buffer, and different surfactant was investigated. The proposed method is capable of determining BTA in the range of 10–100 μg/L with a limit of detection (LOD) 5 μg/L and limit of quantifi cation (LOQ) 16 μg/L. In addition, the relative standard deviation (RSD) of this method was 2.5 and 1%. Also, benzotriazole was measured in real water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Jover, V. Matamoros, and J. Maria Bayona, J. Chromatogr. A, 1216, 4013–4019 (2009).

    Article  Google Scholar 

  2. Y. S. Liu, G.G. Ying, A. Shareef, and R. S. Kookan, Environ. Pollut., 165, 225–232 (2012).

    Article  Google Scholar 

  3. Y. Li, J. Wang, W. Guo, C. Gao, and Z. Cheng, Instrum. Sci. Technol., 45, 290–300 (2017).

    Article  Google Scholar 

  4. L. Hamenu, A. Madzvamuse, and L. Mohammed, J. Ind. Eng. Chem., 53, 241–246 (2017).

    Article  Google Scholar 

  5. M. Lv, J. Ma, Q. Li, and Hui Xu, Bioorg. Med. Chem. Lett., 28, 181–187 (2018).

    Article  Google Scholar 

  6. G. D. Breedveld, R. Roseth, M. Sparrevik, T. Hartnlk, and L. J. Hem, Water, Air, Soil Pollut., 3, 91–101 (2003).

    Article  Google Scholar 

  7. G. K. Patil, H. C. Patil, I. M. Patil, S. L. Borse, and S. P. Pawar, World J. Pharm. Pharm. Sci., 4, 532–548 (2015).

    Google Scholar 

  8. N. P. Milosevic, V. B. Dimova, and N. U. Perisic-Janjic, Eur. J. Pharm. Sci., 49, 10–17 (2013).

    Article  Google Scholar 

  9. M. M. Mennucci, E. P. Banczek, P. R. P. Rodrigues, and I. Costa, Cement Concrete Compos., 31, 418–424 (2009).

    Article  Google Scholar 

  10. K. Wang, H. W. Pickering, and K. G. Weil, J. Electrochem. Soc., 150, B176–B180 (2003).

    Article  Google Scholar 

  11. Z. Zhang, N. Ren, Y.F. Li, T. Kunisue, D. Gao, and K. Kannan, Environ. Sci. Technol., 45, 3909–3916 (2011).

    Article  ADS  Google Scholar 

  12. W. Giger, C. Schaffner, and H. P. Kohler, Environ. Sci. Technol., 40, 7186–7192 (2006).

    Article  ADS  Google Scholar 

  13. R. Loos, G. Locoro, S. Comero, S. Contini, D. Schwesig, F. Werres, P. Balsaa, O. Gans, S. Weiss, L. Blaha, M. Bolchi, and B. Manfred Gawlik, Water Res., 44, 4115–4126 (2010).

    Article  Google Scholar 

  14. C. Dominguez, C. Reyes-Contreras, and J. M. Bayona, J. Chromatogr. A, 1230, 117–122 (2012).

    Article  Google Scholar 

  15. N. Haji Seyed Javadi, M. Baghdadi, N. Mehrdadi, and M. Mortazavi, J. Environ. Chem. Eng., 6, 6421–6430 (2018).

    Article  Google Scholar 

  16. P. Herrero, F. Borrull, R. M. Marce, and E. Pocurull, J. Chromatogr. A, 1355, 53–60 (2014).

    Article  Google Scholar 

  17. A. Naccarato, E. Gionfriddo, G. Sindona, and A. Tagarelli, J. Chromatogr. A, 1338, 164–173 (2014).

    Article  Google Scholar 

  18. E. Patsalides and K. Robards, J. Chromatogr., 331, 149–160 (1985).

    Article  Google Scholar 

  19. W. Xu, W. Yan, and T. Licha, J. Chromatogr. A, 1422, 270–276 (2015).

    Article  Google Scholar 

  20. J. Casado, I. Rodriguez, I. Carpinteiro, M. Ramil, and R. Cela, J. Chromatogr. A, 1293, 126–132 (2013).

    Article  Google Scholar 

  21. Y. S. Liu, G. G. Ying, A. Shareef, and R. S. Kookana, J. Chromatogr. A, 1218, 5328–5335 (2011).

    Article  Google Scholar 

  22. L. Jing, W. Meng-Meng, W. Qiang, L. Hai-Pu, and Y. Zhao-Guang, Chin. J. Anal. Chem., 46, 1817–1824 (2018).

    Article  Google Scholar 

  23. R. Asrariyan and S. Elhami, Chem. Pap., 71, 2301–2308 (2017).

    Article  Google Scholar 

  24. Y. Tang and X. Zeng, J. Chem. Ed., 87, 742–746 (2010).

    Article  Google Scholar 

  25. H. Parham, N. Pourreza, and F. Marahel, Spectrochim. Acta, Mol. Biomol. Spectrosc., 151, 308–314 (2015).

    Article  Google Scholar 

  26. J. N. Miller and J. C Miller, Statistics and Chemometrics for Analytical Chemistry, 6th ed., ISBN-978-0-273-73042-2 (2010).

  27. A. A. Szalay, P. J. Hill, and L. J. Kricka, Bioluminescence and Chemiluminescence: Chemistry, Biology and Applications, 1st ed., World Scientifi c Publ. (2007).

  28. P. Herrero, F. Borrull, E. Pocurull, and R. M. Marce, J. Chromatogr. A, 1309 (2013) 22–32.

    Article  Google Scholar 

  29. A. Speltini, M. Sturini, F. Maraschi, A. Porta, and A. Profumo, Talanta, 147 (2016) 322–327.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Sohrabi.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 2, p. 347, March–April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaile, N., Sohrabi, M.R. & Motiee, F. Rapid and Sensitive Spectrophotometry Method Based on Gold Nanoparticles for Trace Determination of Benzotriazole in Aqueous Solutions. J Appl Spectrosc 87, 372–377 (2020). https://doi.org/10.1007/s10812-020-01009-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-01009-y

Keywords

Navigation