Skip to main content

Advertisement

Log in

Fluorescence Reduction in Raman Spectroscopy by Chemical Bleaching on Renal Stones

  • Published:
Journal of Applied Spectroscopy Aims and scope

In this study, a hydrogen peroxide-based chemical bleaching technique was applied on two different types of renal stones. The characterization was achieved after the bleaching process. They were identified as calcium phosphate and calcium oxalate monohydrate. The samples were analyzed using dispersive Raman spectroscopy with a 532-nm excitation laser. To compare the results, the samples were measured using both FT-IR and FT-Raman spectroscopy. Consequently, the mineral/matrix ratio of Raman bands changed for both samples, but without any noticeable frequency shifts in the Raman spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, Chemometr. Intell. Lab. Syst., 76, 121–133 (2005).

    Article  Google Scholar 

  2. A. P. Shreve, N. J. Cherepy, and R. A. Mathies, Appl. Spectrosc., 46, 707–711 (1992).

    Article  ADS  Google Scholar 

  3. S. Yang, B. Li, M. N. Slipchenko, A. Akkus, N. G. Singer, Y. N. Yeni, and O. Akkus, J. Raman Spectrosc., 44, 1089–1095 (2013).

    Article  ADS  Google Scholar 

  4. Y. K. Min, T. Yamamoto, E. Kohda, T. Ito, and H. Hamaguchi, J. Raman Spectrosc., 36, 73–75 (2005).

    Article  ADS  Google Scholar 

  5. M. Sauer, J. Hofkens, and J. Enderlein, Handbook of Fluorescence Spectroscopy and Imaging, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2015); doi: https://doi.org/10.1002/9783527633500.ch1.

    Book  Google Scholar 

  6. D. Wei, S. Chen, and Q. Liu, Appl. Spectrosc. Rev., 50, N 5, 387–406 (2015).

  7. T. C. Chen, D. A. Shea, M. D. Morris, Appl. Spectrosc., 56, 1035–1037 (2002).

    Article  ADS  Google Scholar 

  8. J. R. Ferraro, K. Nakamoto, and Ch. W. Brown, Introductory Raman Spectroscopy, 2nd edn., Academic Press, San Diego (2003).

    Google Scholar 

  9. V. Košarová, D. Hradil, I. Nemec, P. Bezdicka, and V. Kanický, J. Raman Spectrosc., 44, 1570–1577 (2013).

    Article  ADS  Google Scholar 

  10. P. J. Cadusch, M. M. Hlaing, S. A. Wade, S. L. McArthur, and P. R. Stoddart, J. Raman Spectrosc., 44, 1587–1595 (2013).

    Article  ADS  Google Scholar 

  11. G. Schulze, A. Jirasek, M. M. L. Yu, A. Lim, R. F. B. Turner, and M. W. Blades, Appl. Spectrosc., 59, 545–574 (2005).

    Article  ADS  Google Scholar 

  12. Handbook of Vibrational Spectroscopy, Eds. N. Sheppard, J. M. Chalmers, and P. R. Griffi ths, Vol. 1, John Wiley and Sons, Chichester, 1–32 (2002).

  13. K. Golcuk, G. S. Mandair, A. F. Callender, N. Sahar, D. H. Kohn, and M. D. Morris, Biochim. Biophys. Acta, 1758, 868–873 (2006).

    Article  Google Scholar 

  14. D. A. Shea and M. D. Morris, Appl. Spectrosc., 56, 182–186 (2002).

    Article  ADS  Google Scholar 

  15. G. Penel, G. Leroy, and E. Bre's, Appl. Spectrosc., 52, 312–313 (1998).

    Article  ADS  Google Scholar 

  16. K. Moharamzadeh, Biocompatibility of Dental Biomaterials, Woodhead Publishing Series in Biomaterials, 113–129 (2017).

    Google Scholar 

  17. T. Vargas-Koudriavtsev, R. Durán-Sedó, P. Sáenz-Bonilla, V. Bonilla-Mora, M. Guevara-Bertsch, R. Antonio Jiménez-Corrales, and O. A. Herrera-Sancho, Rev. Odontol. Mex., 19, 228–235 (2015).

    Google Scholar 

  18. M. Unal and O. Akkus, Bone, 81, 315–326 (2015).

    Article  Google Scholar 

  19. G. S. Mandair and M. D. Morris, Bonekey Rep., 4, 1–8 (2015).

    Article  Google Scholar 

  20. H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, W. K. Esmonde, N. J. Fullwood, B. Gardner, P. L. M. Hirsch, M. J. Walsh, M. R. M. Ainsh, N. Stone, and F. L. Martin, Nature Protocol, 11, 664–687 (2016).

    Article  Google Scholar 

  21. J. M. Silveira, S. Longelin, A. D. Mataa, and M. L. Carvalho, J. Raman Spectrosc., 43, 1089–1093 (2012).

    Article  ADS  Google Scholar 

  22. Z. Li1, M. AI-Jawad, S. Siddiqui, and J. D. Pasteris, Sci. Rep., 5, 1–10 (2015).

  23. M. Ritza, L. Vaculíkovác, J. Kupkováe, E. Plevovác, and L. Bartonováa, Vibr. Spectrosc., 84, 7–15 (2016).

    Article  Google Scholar 

  24. J. J. Freeman, B. Wopenka, M. J. Silva, and J. D. Pasteris, Calcif. Tissue Int., 68, 156–162 (2001).

    Article  Google Scholar 

  25. M. D. Morris and G. S. Mandair, Clin. Orthopaed. Relat. Res., 469, 2160–2169 (2011).

    Article  Google Scholar 

  26. S. K. H. Khalil and M. A. Azooz, J. Appl. Sci. Res., 3, 387–391 (2007).

    Google Scholar 

  27. M. Daudon, M. F. Protat, R. J. Reveillaud, and H. Jaeschke-Boyer, Kidney Int., 23, 842–850 (1983).

    Article  Google Scholar 

  28. M. Pucetaite, M. Velicka, S. Tamosaityte, and V. Sablinskas, Plasmonic Biol. Med., 8957, 1–8 (2014).

    Google Scholar 

  29. E. E. Lawson, B. W. Barry, A. C. Williams, and H. G. M. Edwards, J. Raman Spectrosc., 28, 111–117 (1997).

    Article  ADS  Google Scholar 

  30. C. Paluszkiewicz, M. Gałka, W. Kwiatek, A. Parczewski, and S. Walas, Biospectroscopy, 3, 403–407 (1997).

    Article  Google Scholar 

  31. C. G. Kontoyannis, N. C. Bouropoulos, and P. G. Koutsoukos, Appl. Spectrosc., 51, 64–67 (1997).

    Article  ADS  Google Scholar 

  32. R. Selvaraju, G. Thiruppathi, and A. Raja, Spectrochim. Acta, A, 93, 260–265 (2012).

    Article  Google Scholar 

  33. M. H. Khaskheli, S. T. H. Sherazi, H. M. Ujan, and S. A. Mahesar, Turk. J. Chem., 36, 477–483 (2012).

    Google Scholar 

  34. X. Carpentier, M. Daudon, O. Traxer, P. Jungers, A. Mazouyes, G. Matzen, E. Véron, and D. Bazin, Urology, 73, 968–975 (2009).

    Article  Google Scholar 

  35. R. Selvaraju, A. Raja, and G. Thiruppathi, Spectrochim. Acta, A, 137, 1397–1402 (2015).

    Article  Google Scholar 

  36. E. L. Prien and E. L. Prien, Am. J. Med., 45, 654–672 (1968).

    Article  Google Scholar 

  37. S. Matsuzaki, K. Matsuzaki, T. Tanikawa, A. Masuda, and F. Matsunaga, Int. J. Urol., 2, 235–237 (1995).

    Article  Google Scholar 

  38. Y. H. Lee, W. C. Huang, J. Y. Tsai, and J. K. Huang, J. Urol., 161, 1453–1457 (1999).

    Article  Google Scholar 

  39. E. V. Wilson, M. J. Bushirib, and V. K. Vaidyan, Spectrochim. Acta, A, 77, 442–445 (2010).

    Article  Google Scholar 

  40. H. T. H. Shing, S. L. Yang, C. L. Cheng, and W. T. Cheng, Urol. Res., 39, 165–170 (2011).

    Article  Google Scholar 

  41. M. Kocademir, A. Baykal, M. Kumru, and M. L. Tahmaz, Spectrochim. Acta, A, 160, 1–7 (2016).

    Article  Google Scholar 

  42. M. Serkan Yalçın, and Mesut Tek, J. Appl. Spectrosc., 85, 61050–61057 (2019).

  43. S. R. Khan, P. N. Shevock, and R. L. Hackett, Calcif. Tissue Int., 42, 91–96 (1988).

    Article  Google Scholar 

  44. S. Sandersius and P. Rez, Urol. Res., 35, 287–293 (2007).

    Article  Google Scholar 

  45. H. Tsuda and J. A. Materia, J. Dent. Res., 73, 1703–1710 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 2, pp. 268–274, March–April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocademir, M., Kumru, M., Gölcük, K. et al. Fluorescence Reduction in Raman Spectroscopy by Chemical Bleaching on Renal Stones. J Appl Spectrosc 87, 282–288 (2020). https://doi.org/10.1007/s10812-020-00997-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-00997-1

Keywords

Navigation