Skip to main content

Advertisement

Log in

Optimization of Procedure for Determining Chlorine Nitrate in the Atmosphere from Ground-Based Spectroscopic Measurements

  • Published:
Journal of Applied Spectroscopy Aims and scope

The procedure for determining the total content of chlorine nitrate (ClONO2) from ground-based measurements of the solar radiation spectra on a Bruker 125HR Fourier spectrometer at the St. Petersburg station (59.88oN, 29.82oE, 20 m above sea level) of the international observational network NDACC is examined. The method was applied to spectra measured in the period from 2009 to 2019, and the results were compared with calculations by the EMAC chemistry-climate model. Good qualitative and quantitative agreement was obtained between the experimental data and the results of numerical modeling. For the period 2009–2017 the average mismatch between model and experiment was 3%, the standard deviation was 43%, and the correlation coefficient was 0.79 ± 0.02, which indicates an adequate description of the variability of the total ClONO2 content by the model. Assessment of the linear trend of the total ClONO2 content showed a significant decrease in the total chlorine nitrate content in the atmosphere over St. Petersburg according both to the ground-based measurements (–2.3 ± 1.9% per year) and to the model (–1.2 ± 0.4% per year).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Solomon, Rev. Geophys., 37, No. 3, 275–316 (1999).

    Article  ADS  Google Scholar 

  2. M. J. Molina and F. S. Rowland, Nature, 249, 810–812 (1974).

    Article  ADS  Google Scholar 

  3. J. C. Farman, B. G. Gardiner, and J. D. Shanklin, Nature, 315 207–210 (1985).

    Article  ADS  Google Scholar 

  4. R. Nassar, P. F. Bernath, C. D. Boone, C. Clerbaux, P. F. Coheur, G. Dufour, L. Froidevaux, E. Mahieu, J. C. McConnell, S. D. McLeod, D. P. Murtagh, C. P. Rinsland, K. Semeniuk, R. Skelton, K. A. Walker, and R. Zander, J. Geophys. Res., 111, D22312 (2006); doi: https://doi.org/10.1029/2006JD007073.

    Article  ADS  Google Scholar 

  5. D. G. Murcray, A. Goldman, F. H. Murcray, F. J. Murcray, and W. J. Williams, Geophys. Res. Lett., 6, No. 11, 857–859 (1979).

    Article  ADS  Google Scholar 

  6. R. Zander, C. P. Rinsland, C. B. Farmer, L. R. Brown, and R. H. Norton, Geophys. Res. Lett., 13, No. 8, 757–760 (1986).

    Article  ADS  Google Scholar 

  7. C. P. Rinsland, M. R. Gunson, R. J. Salawitch, H. A. Michelsen, R. Zander, M. J. Newchurch, M. M. Abbas, M. C. Abrams, G. L. Manney, A. Y. Chang, F. W. Irion, A. Goldman, and E. Mahieu, Geophys. Res. Lett., 23, No. 17, 2365–2368 (1996).

    Article  ADS  Google Scholar 

  8. H. Nakajima, T. Sugita, H. Irie, N. Saitoh, H. Kanzawa, H. Oelhaf, G. Wetzel, G. C. Toon, B. Sen, J.-F. Blavier, W. A. Traub, K. Jucks, D. G. Johnson, T. Yokota, and Y. Sasano, J. Geophys. Res., 111, D11S01 (2006); doi: 10.1029/2005JD006441.

  9. M. Höpfner, T. von Clarmann, H. Fischer, B. Funke, N. Glatthor, U. Grabowski, S. Kellmann, M. Kiefer, A. Linden, M. Milz, T. Steck, G. P. Stiller, P. Bernath, C. E. Blom, Th. Blumenstock, C. Boone, K. Chance, M. T. Coffey, F. Friedl-Vallon, D. Griffith, J. W. Hannigan, F. Hase, N. Jones, K. W. Jucks, C. Keim, A. Kleinert, W. Kouker, G. Y. Liu, E. Mahieu, J. Mellqvist, S. Mikuteit, J. Notholt, H. Oelhaf, C. Piesch, T. Reddmann, R. Ruhnke, M. Schneider, A. Strandberg, G. Toon, K. A. Walker, T. Warneke, G. Wetzel, S. Wood, and R. Zander, Atm. Chem. Phys., 7, No. 1 (2007) 257–281 (1996).

  10. E. Mahieu, R. Zander, P. Duchatelet, J. W. Hannigan, M. T. Coffey, S. Mikuteit, F. Hase, T. Blumenstock, A. Wiacek, K. Strong, J. R. Taylor, R. L. Mittermeier, H. Fast, C. D. Boone, S. D. McLeod, K. A. Walker, P. F. Bernath, and C. P. Rinsland, Geophys. Res. Lett., 32, No. 15 (2005) L15S08; doi: 10.1029/2005GL022396.

  11. IRWG/NDACC Observation Network: https://www2.acom.ucar.edu/irwg.

  12. Ya. A. Virolainen, Yu. M. Timofeyev, A. V. Poberovskii, O. Kirner, and M. Hoepfner, Izv. RAN FAO,51, No. 1, 60–68 (2015) [Ya. A. Virolainen, Yu. M. Timofeyev, A. V. Poberovskii, O. Kirner, and M. Hoepfner, Izv. Atm. Ocean. Phys., 51, No. 1, 49–56 (2015).]

  13. R. Kohlhepp, R. Ruhnke, M. P. Chipperfi eld, M. De Mazière, J. Notholt, S. Barthlott, R. L. Batchelor, R. D. Blatherwick, Th. Blumenstock, M. T. Coffey, P. Demoulin, H. Fast, W. Feng, A. Goldman, D. W. T. Griffi th, K. Hamann, J. W. Hannigan, F. Hase, N. B. Jones, A. Kagawa, I. Kaiser, Y. Kasai, O. Kirner, W. Kouker, R. Lindenmaier, E. Mahieu, R. L. Mittermeier, B. Monge-Sanz, I. Morino, I. Murata, H. Nakajima, M. Palm, C. Paton-Walsh, U. Raffalski, Th. Reddmann, M. Rettinger, C. P. Rinsland, E. Rozanov, M. Schneider, C. Senten, C. Servais, B.-M. Sinnhuber, D. Smale, K. Strong, R. Sussmann, J. R. Taylor, G. Vanhaelewyn, T. Warneke, C. Whaley, M. Wiehle, and S. W. Wood, Atm. Chem. Phys., 12, No. 7, 3527–3556 (2012).

  14. M. V. Makarova, A. V. Poberovskii, F. Hase, Yu. Timofeyev, and Kh. Kh. Imhasin, Zh. Prikl. Spektrosk., 83, No. 3, 437–444 (2016) [M. V. Makarova, A. V. Poberovskii, F. Hase, Yu. Timofeyev, and Kh. Kh. Imhasin, J. Appl. Spectrosc., 83, No. 3, 429–436 (2016).]

  15. Y. Timofeyev, Y. Virolainen, M. Makarova, A. Poberovsky, A. Polyakov, D. Ionov, S. Osipov, and H. Imhasin, J. Mol. Spectrosc., 323, 2–14 (2016).

    ADS  Google Scholar 

  16. IRWG/NDACC Observation data base: ftp://ftp.cpc.ncep.noaa.gov/ndacc/station/st.petersburg/hdf/ftir/

  17. F. Hase, J. W. Hannigan, M. T. Coffey, A. Goldman, M. Höpfner, N. B. Jones, C. P. Rinsland, and S. W. Wood, J. Quantum. Spectrosc. Radiat. Transfer, 87, 25–52 (2004).

    Article  ADS  Google Scholar 

  18. NCEP CPC Data base: https://acd-ext.gsfc.nasa.gov/Data_services/met/

  19. M. Park, W. J. Randel, D. E. Kinnison, L. K. Emmons, P. F. Bernath, K. A. Walker, C. D. Boone, and M. J. Livesey, Geophys. Res.: Atmospheres, 118, No. 4, 1964–1980 (2013)

    ADS  Google Scholar 

  20. Ya. A. Virolainen, Zh. Prikl. Spektrosk., 85, No. 3, 453–460 (2018) [Ya. A. Virolainen, J. Appl. Spectrosc., 85, No. 3, 462–469 (2018).]

  21. Y. A. Virolainen, Y. M. Timofeyev, V. S. Kostsov, D. V. Ionov, V. V. Kalinnikov, M. V. Makarova, A. V. Poberovsky, N. A. Zaitsev, H. H. Imhasin, A. V. Polyakov, M. Schneider, F. Hase, S. Barthlott, and T. Blumenstock, Atm. Meas. Tech., 10, No. 11, 4521–4536 (2017).

    Article  Google Scholar 

  22. Ya. A. Virolainen, Yu. M. Timofeyev, A. V. Poberovskii, M. Eremenko, and G. Dufour, Izv. RAN, 51, No. 2, 191–200 (2015) [ Ya. A. Virolainen, Yu. M. Timofeyev, A. V. Poberovskii, M. Eremenko, and G. Dufour, Izv. Atm. Ocean. Phys., 51, No. 2, 167–176 (2015).]

  23. A. V. Polyakov, Ya. A. Virolainen, and M. V. Makarova, Zh. Prikl. Spektrosk., 85, No. 6, 962–970 (2018) [A. V. Polyakov, Ya. A. Virolainen, and M. V. Makarova, J. Appl. Spectrosc., 85, No. 6, 1085–1093 (2018).]

  24. A. N. Tikhonov, DAN SSSR, 151, No. 3, 501–504 (1963).

    Google Scholar 

  25. L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, J. Quantum. Spectrosc. Radiat. Transfer, 110, Nos. 9–10, 25–52 (2009).

  26. R. Kohlhepp, S. Barthlott, T. Blumenstock, F. Hase, I. Kaiser, U. Raffalski, and R. Ruhnke, Atm. Chem. Phys., 11, No. 10, 4669–4677 (2011).

    Article  ADS  Google Scholar 

  27. J. W. Hannigan, M. T. Coffey, and A. Goldman, J. Atm. Ocean. Technol., 26, 1814–1828 (2009).

    Article  Google Scholar 

  28. P. Jöckel, H. Tost, A. Pozzer, C. Brühl, J. Buchholz, L. Ganzeveld, P. Hoor, A. Kerkweg, M. G. Lawrence, R. Sander, B. Steil, G. Stiller, M. Tanarhte, D. Taraborrelli, J. van Aardenne, and J. Lelieveld, Atm. Chem. Phys., 6, No. 12, 5067–5104 (2006).

    Article  ADS  Google Scholar 

  29. Ya. A. Virolainen, Yu. M. Timofeyev, A. V. Polyakov, D. V. Ionov, O. Kirner, A. V. Poberovskii, Izv. RAN FAO, 52, No. 1, 64–73 (2016). [Ya. A. Virolainen, Yu. M. Timofeyev, A. V. Polyakov, D. V. Ionov, O. Kirner, A. V. Poberovskii, and Kh. Imkhasin, Izv. Atm. Ocean. Phys., 52, No. 1, 57–65 (2016).]

  30. T. von Clarmann and S. Johansson, Atm. Chem. Phys., 18, 15363–15386; https://doi.org/10.5194/acp-18-15363-2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Virolainen.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 2, pp. 306–313, March–April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virolainen, Y.A., Polyakov, A.V. & Kirner, O. Optimization of Procedure for Determining Chlorine Nitrate in the Atmosphere from Ground-Based Spectroscopic Measurements. J Appl Spectrosc 87, 319–325 (2020). https://doi.org/10.1007/s10812-020-01002-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-01002-5

Keywords

Navigation