Skip to main content
Log in

Optimization of Phosphomolybdic Acid Synthesis using 31p NMR Data

  • Published:
Journal of Applied Spectroscopy Aims and scope

A 31P NMR study was carried out to determine the composition of phosphomolybdic acids (PMA) formed in the reaction of molybdenum oxide and phosphoric acid with Mo/P molar ratio = 12. The molybdenum oxide conversion increases with dilution of the reaction mixture. The major product of this reaction over the entire range of conditions studied was the acid H7PMo11O39. The maximum concentration of H3PMo12O40 acid is achieved when the H2O:MoO3 mass ratio is 10, which is optimal for the preparative synthesis of PMA (84% yield).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. K. Zarzycki, M. A. Bartoszuk, and A. RadziwonBalicka, J. Planar Chromatogr., 19, 52–57 (2006).

    Article  Google Scholar 

  2. R. L. Prior, X. Wu, and K. Schlach, J. Agric. Food Chem., 53, No. 10, 4290–4302 (2005).

    Article  Google Scholar 

  3. I. I. Vorontsov, The Production of Organic Dyes [in Russian], Goskhimizdat, Moscow (1962).

    Google Scholar 

  4. A. A. Pimerzin, N. N. Tomina, N. M. Maksimov, V. S. Tsvetkov, and P. S. Solmanov, Method for the Catalyst Preparation and a Catalyst for the Extensive Hydroupurifi cation of Petroleum Fractions [in Russian], Russian Federation Patent 2486010 (2013).

  5. A. N. Loginova, I. M. Krukovsky, Ya. V. Mikhailova, V. V. Fadeev, E. A. Isaeva, and A. V. Leont'ev, Catalyst for the Hydropurifi cation of Diesel Fractions and a Method for Its Preparation [in Russian], Russian Federation Patent 2566307 (2015).

  6. A. Gribobal, P. Blanchard, E. Payen, M. Fournier, and J. L. Dubois, Catal. Today, 45, 277–283 (1998).

    Article  Google Scholar 

  7. O. V. Klimov, M. A. Fedotov, A. V. Pashigreva, S. V. Budukva, E. N. Kirichenko, G. A. Bukhtiyarova, and A. S. Novikov, Kinetics and Catalysis, 50, No. 6, 867–873 (2009).

    Article  Google Scholar 

  8. M. T. Pope and A. Müller (editors), Polyoxometalate Chemistry from Topology via SelfAssembly, Kluwer Academic Publishers, New York–Boston–Dordrecht–London–Moscow (2002).

  9. E. A. Nikitina, Heteropoly Compounds [in Russian], GNII Khimicheskoi Literatury, Moscow (1962).

    Google Scholar 

  10. J. F. Keggin, Proceedings Roy. Soc. London A, 144, 75–100 (1934).

    Article  ADS  Google Scholar 

  11. R. Strandberg, Acta Chem. Scand., 27, 1004–1018 (1973).

    Article  Google Scholar 

  12. Gmelin Handbook of Inorganic Chemistry, 8th edn., Molybdenum Suppl. Vol. B 3b. Molybdate and Peroxomolybdate Ions, Springer Verlag, Berlin–Heidelberg (1989), pp. 90–94, 102–104.

  13. J. A. R. van Veen, O. Sudmeijer, C. A. Emeis, and H. de Wit, J. Chem. Soc., Dalton Trans., No. 9, 1825–1831 (1986).

  14. D. Bajuk-Bogdanović, I. Holclajtner-Antunović, M. Todorović, U. B. Mioč, and J. Zakrzewska, J. Serbian Chem. Soc., 73, No. 2, 197–209 (2008).

    Article  Google Scholar 

  15. G. A. Tsigdinos, Top. Curr. Chem., 76, 1–64 (1978).

    Article  Google Scholar 

  16. C. C. Kirchner and S. R. Crouch, Anal. Chem., 55, 242–248 (1983).

    Article  Google Scholar 

  17. http://www.vekton.ru/menu/price/ site of AO Vekton, 2019 (correspondence date July 22, 2019).

  18. K. Murata and S. Ikeda, Polyhedron, 2, No. 10, 1005–1008 (1983).

    Article  Google Scholar 

  19. G. M. Maksimov, Usp. Khim., 64, No. 5, 480–496 (1995).

    Article  Google Scholar 

  20. G. Johannson, L. Petterson, and N. Igri, Acta Chem. Scand., 32A, 407–414 (1978).

    Article  Google Scholar 

  21. L. Petterson, I. Andersson, and L.-O. Ohman, 25, 4726–4733 (1986).

    Google Scholar 

  22. X. Lopez, J. J. Carbo, C. Bo, and J. M. Poblet, Chem. Soc. Rev., 41, 7537–7571 (2012).

    Article  Google Scholar 

  23. J. J. Borras-Almenar, E. Coronado, A. Müller, and M. Pope (Eds.), Polyoxometalate Molecular Science, Springer- Science+Business Media, Dordrecht (2003).

    Google Scholar 

  24. A. Rosenheim and J. Jaenicke, Z. Anorg. Chem., 101, No. 1, 235–275 (1917).

    Article  Google Scholar 

  25. H. Wu, J. Biol. Chem.¸43, No. 1, 189–220 (1920).

  26. G. M. Maksimov, R. I. Maksimovskaya, and I. V. Kozhevnikov, Zh. Neorg. Khim., 39, No. 4, 623–628 (1994) [Russ. J. Inorg. Chem., 39, No. 4, 595–600 (1994)].

  27. A. F. Gafarova, N. Kh. Bekmetova, V. V. Kuril'skaya, A. M. Volkova, Zh. Ya. Onopchenko, and N. V. Pavlova, Method for the Preparation of Phosphomolybdic Acid [in Russian], USSR Patent 1,039,875 (1982).

  28. G. A. Tsigdinos, Ind. Eng. Chem., Prod. Res. Develop., 13, 267–274 (1974).

  29. China Tungsten, 2019: http//www.molybdenum.com.en/phosphomolybdicacidhydrateproduction-processes.html/(correspondence date July 23, 2019).

  30. L. E. Briand, G. M. Vallea, and H. J. Thomas, J. Mater. Chem., 12, 299–304 (2002).

    Google Scholar 

  31. S. Himeno, M. Hashimoto, and T. Ueda, Inorg. Chim. Acta, 284, 237–245 (1999).

    Article  Google Scholar 

  32. M. A. Fedotov and R. I. Maksimovskaya, Zh. Strukt. Khim., 47, No. 5, 961–984 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Krukovsky.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 2, pp. 252–260, March–April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krukovsky, I.M., Sheloumov, A.M., Golubev, O.V. et al. Optimization of Phosphomolybdic Acid Synthesis using 31p NMR Data. J Appl Spectrosc 87, 267–274 (2020). https://doi.org/10.1007/s10812-020-00995-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-00995-3

Keywords

Navigation