Skip to main content
Log in

Rapid and Simple Spectrophotometric Method for the Determination of Antiviral and Anti-Parkinsonism Drugs

  • Published:
Journal of Applied Spectroscopy Aims and scope

A rapid and sensitive spectrophotometric method has been developed for the quantitative analysis of three antiviral, anti-parkinsonism drugs, namely, amantadine (AMA), memantine (MET), and rimantadine (RIM). The method is based on the usage of 1,3-indandione (IDO) as a chromogenic reagent to form charge transfer complexes with the studied drugs and produce colored reaction products with an absorbance maximum at 522 nm, allowing quantitative analysis of these drugs. In addition, the study was validated according to the official guidelines that permits usage in quality control laboratories. Many factors (reagent volume, diluting solvent, temperature, reaction and stability time) influencing the reactions were studied and optimized. The results showed that this method is able to detect AMA, MET, or RIM over a linear range between 10–140 μg/mL with high selectivity and robustness. Furthermore, the study results were applied to analyze the drugs in their pharmaceutical preparations with acceptable accuracy and precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. M. Robert G. Webster, Thomas J. Braciale, and Robert A. Lamb, Textbook of Infl uenza, Wiley Blackwell, West Sussex, UK (2013).

  2. T. Jefferson, J. J. Deeks, V. Demicheli, D. Rivetti, and M. Rudin, Cochrane Database Syst. Rev., CD001169 (2004).

  3. G. Hubsher, M. Haider, and M. S. Okun, Neurology, 78, 1096–1099 (2012).

    Article  Google Scholar 

  4. L. Verhagen Metman, Neurology, 50, 1323–1326 (1998).

    Article  Google Scholar 

  5. R. S. Schwab, A. C. England, Jr., D. C. Poskanzer, and R. R. Young, JAMA, 208, 1168–1170 (1969).

    Article  Google Scholar 

  6. M. T. Elkurd, L. B. Bahroo, and R. Pahwa, Neurodegener Dis. Manage., 8, 73–80 (2018).

    Article  Google Scholar 

  7. W. K. Ko, Mov. Disord., 29, 772–779 (2014).

    Article  Google Scholar 

  8. J. Paik and S. J. Keam, CNS Drugs, 32, 797–806 (2018).

    Article  Google Scholar 

  9. N. Chhabria, S. Isaacson, K. Lyons, and R. Pahwa, Mov. Disord., 33, S527 (2018).

    Google Scholar 

  10. J. Kornhuber, M. Weller, K. Schoppmeyer, and P. Riederer, J. Neural Transm., 43, 91–104 (1994).

    Google Scholar 

  11. M. G. Hassan, Biomed. Chromatogr., 26, 214–219 (2012).

    Article  Google Scholar 

  12. J. Saxton, J. Alzheimers Dis., 28, 109–118 (2012).

    Article  Google Scholar 

  13. S. Graham, M. Tocco, S. Hendrix, R. K. Hofbauer, and J. L. Perhach, Eur. Neuropsychopharm., 20, S557–S558 (2010).

    Google Scholar 

  14. H. J. Leis, G. Fauler, and W. Windischhofer, J. Mass Spectrom., 37, 477–480 (2002).

    Article  ADS  Google Scholar 

  15. C. Shuangjin, F. Fang, L. Han, and M. Ming, J. Pharm. Biomed. Anal., 44, 1100–1105 (2007).

    Article  Google Scholar 

  16. Q. Jia, Anal. Bioanal. Chem., 410, 5555–5565 (2018).

    Article  Google Scholar 

  17. R. Jannasch, Pharmazie, 41, 478–482 (1986).

    Google Scholar 

  18. H. H. Yeh, Y. H. Yang, and S. H. Chen, Electrophoresis, 31, 1903–1911 (2010).

    Article  Google Scholar 

  19. R. M. El Nashar, A. S. M. El-Tantawy, and S. S. M. Hassan, Int. J. Electrochem. Sci., 7, 10802–10817 (2012).

    Google Scholar 

  20. Y. Dou, Y. Sun, Y. Q. Ren, P. Ju, and Y. L. Ren, J. Pharm. Biomed., 37, 543–549 (2005).

    Google Scholar 

  21. A. Sahu, M. Narayanam, M. Kurmi, M. K. Ladumor, and S. Singh, Magn. Reson. Chem.54, 632–636 (2016).

    Article  Google Scholar 

  22. I. Muszalska, J. Anal. Chem., 70, 320–327 (2015).

    Google Scholar 

  23. A. M. Mahmoud, N. Y. Khalil, I. A. Darwish, and T. Aboul-Fadl, Int. J. Anal. Chem., 2009, 810104 (2009).

    Google Scholar 

  24. A. A. Mustafa, S. A. Abdel-Fattah, S. S. Toubar, and M. A. Sultan, J. Anal. Chem., 59, 33–38 (2004).

    Google Scholar 

  25. A. Sobczak, I. Kiaszewicz, K. Rabiega, M. A. Lesniewska, and A. Jelińska, J. Anal. Chem., 70, 320–327 (2015).

    Google Scholar 

  26. J. K. Stille, J. M. Unglaube, and M. E. Freeburger, J. Am. Chem. Soc., 90, 7076 (1968).

    Article  Google Scholar 

  27. C. F. Bernasconi and M. W. Stronach, J. Am. Chem. Soc., 113, 2222–2227 (1991).

    Article  Google Scholar 

  28. Validation of Analytical Procedures: Text And Methodology; https://www.ich.org/fi leadmin/Pub-lic_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf. (2005).

  29. K. C. Ingham, Anal. Biochem., 68, 660–663 (1975).

    Article  Google Scholar 

  30. D. A. Armbrust er and T. Pry, Clin. Biochem. Rev., 29, S49–52 (2008).

  31. M. M. H. Khairia, M. Al-Ahmary, and Areej H. Al-Obidan, Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 196, 247–255 (2018).

  32. H. A. O. a. A. S. Amin, J. Saudi Chem. Soc., 16, 75–81 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Oraby or M. M. Elsutohy.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 2, pp. 275–281, March–April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oraby, M., Abdelhamid, A.A., Mohamed, K.M.H. et al. Rapid and Simple Spectrophotometric Method for the Determination of Antiviral and Anti-Parkinsonism Drugs. J Appl Spectrosc 87, 289–295 (2020). https://doi.org/10.1007/s10812-020-00998-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-00998-0

Keywords

Navigation