Skip to main content
Log in

Enhanced F-OFDM candidate for 5G applications

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

The demand for high data rate, the generation of Internet of Things (IoT), and various Machine Type Communications (MTC) emerged for a new transmission phenomenon. In other words, it is substantial to communicate without synchronization, or synchronization overhead, with mixed signal types. such specifications cannot be covered by the Fourth Generation (4G) systems, which is based on Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM). However, to achieve the specifications of the next generation system, numerous waveform replacements for the CP–OFDM were suggested, Filter Bank Multi–Carrier (FBMC), Generalized Frequency Division Multiplexing (GFDM), Universal Filtered Multi–Carrier (UFMC), and Filtered OFDM (F–OFDM). The filter design occupies essential part in these replacements, thus, in this paper, novel filters are introduced where simulation results show that the proposed filters outperform previous designs in terms of spectral efficiency improved dramatically by releasing the synchronization overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  • 5G-NR (2019) Base station (BS) radio transmission and reception. ETSI TS.138.104: Release 15, version 15.5.0 www.etsi.org

  • Abdoli J, Jia M, Ma J Filtered (2015) OFDM: a new waveform for future wireless systems. In: 2015 IEEE 16th international workshop on signal processing advances in wireless communications (SPAWC), Stockholm, Sweden, 28 June-1 July. pp 66–70. https://doi.org/10.1109/SPAWC.2015.7227001

  • Ahmed MS, Shah NSM, Ghawbar F, Jawhar YA, Almohammedi AA (2020) Filtered-OFDM with channel coding based on T-distribution noise for underwater acoustic communication. J Amb Intel Hum Comp. https://doi.org/10.1007/s12652-020-01713-9

    Article  Google Scholar 

  • An C, Kim B, Ryu H (2017) WF-OFDM (windowing and filtering OFDM) system for the 5G new radio waveform. In: 2017 IEEE XXIV international conference on electronics, electrical engineering and computing (INTERCON), Cusco, Peru, August 15–18. pp 1–4. https://doi.org/10.1109/INTERCON.2017.8079635

  • Andreas A (2006) Digital signal processing: signals, systems, and filters. McGraw-Hill, New York

    Google Scholar 

  • Andrews JG, Buzzi S, Choi W, Hanly SV, Lozano A, Soong ACK, Zhang JC (2014) What Will 5G Be? IEEE J SEL AREA COMM 32(6):1065–1082. https://doi.org/10.1109/JSAC.2014.2328098

    Article  Google Scholar 

  • Banelli P, Buzzi S, Colavolpe G, Modenini A, Rusek F, Ugolini A (2014) Modulation formats and waveforms for 5G networks: Who willbe the heir of OFDM?: an overview of alternative modulation schemes for improved spectral efficiency. IEEE Signal Proc Mag 31(6):80–93. https://doi.org/10.1109/MSP.2014.2337391

    Article  Google Scholar 

  • Bazzi J, Weitkemper P, Kusume K, Benjebbour A, Kishiyama Y (2015) Design and Performance Tradeoffs of Alternative Multi-Carrier Waveforms for 5G. In: 2015 IEEE globecom workshops (GC Wkshps), San Diego, December 6–10. pp 1–6. https://doi.org/10.1109/GLOCOMW.2015.7414010

  • Bedoui A, Et-tolba MA (2017) Comparative analysis of filter bank multicarrier (FBMC) as 5G multiplexing technique. In: 2017 international conference on wireless networks and mobile communications (WINCOM), Rabat, Morocco, November 1–4. pp 1–7. https://doi.org/10.1109/WINCOM.2017.8238200

  • Bellanger M et al. (2010) FBMC physical layer : a primer PHYDYAS:1–31

  • Bölcskei H (2003) Orthogonal frequency division multiplexing based on offset QAM. In: Feichtinger HG, Strohmer T (eds) Advances in gabor analysis, Birkhäuser Boston, Boston, pp 321–352. doi: https://doi.org/10.1007/978-1-4612-0133-5_12

  • Cheng X, He Y, Ge B, He C A (2016) Filtered OFDM Using FIR Filter Based on Window Function Method. In: 2016 IEEE 83rd vehicular technology conference (VTC Spring), Nanjing, China, May 15-18. pp 1–5. https://doi.org/10.1109/VTCSpring.2016.7504065

  • Farhang-Boroujeny B, Yuen C (2010) Cosine modulated and offset QAM filter bank multicarrier techniques: a continuous-time prospect. Eurasip J Adv Sig Pr 2010:165654. https://doi.org/10.1155/2010/165654

    Article  Google Scholar 

  • Fettweis G, Krondorf M, Bittner S (2009) GFDM - generalized frequency division multiplexing. In: VTC Spring 2009— IEEE 69th vehicular technology conference, Barcelona, Spain, April 26–29. pp 1–4. https://doi.org/10.1109/VETECS.2009.5073571

  • Gokceli S, Basar E, Kurt GK (2018) Universal filtered OFDM with filter shift keying—Invited Paper. In: 2018 IEEE 87th vehicular technology conference (VTC Spring), Porto, Portugal, June 3–6. pp 1–5. https://doi.org/10.1109/VTCSpring.2018.8417532

  • Hammoodi A, Audah L, Taher MA (2019) Green coexistence for 5G waveform candidates: a review. IEEE ACCESS 7:10103–10126. https://doi.org/10.1109/ACCESS.2019.2891312

    Article  Google Scholar 

  • Harris FJ (1978) On the use of windows for harmonic analysis with the discrete Fourier transform. P IEEE 66(1):51–83. https://doi.org/10.1109/PROC.1978.10837

    Article  Google Scholar 

  • Helms H (1971) Digital filters with equiripple or minimax responses. IEEE T Acoust Speech 19(1):87–93. https://doi.org/10.1109/TAU.1971.1162156

    Article  Google Scholar 

  • Hu KC, Armada AG (2016) SINR analysis of OFDM and f-OFDM for machine type communications. In: 2016 IEEE 27th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), Valencia, Spain, September 4–8. pp 1-6. https://doi.org/10.1109/PIMRC.2016.7794702

  • Huawei and HiSilicon (2016) f-OFDM scheme and filter design. 3GPP RAN1 #85 Meeting, Technical Document R1–165425, Nanjing, China, May 23-27

  • Iwabuchi M , Benjebbour A et al. (2017) 5G field experimental trial on frequency domain multiplexing of mixed numerology. In: 2017 IEEE 85th vehicular technology conference (VTC Spring), Sydney, Australia, June 4–7. pp 1–5. https://doi.org/10.1109/VTCSpring.2017.8108645

  • Jawhar YA, Audah L, Taher MA, Ramli KN, Shah NSM, Musa M, Ahmed MS (2019) A Review of Partial Transmit Sequence for PAPR Reduction in the OFDM Systems. IEEE ACCESS 7:18021–18041. https://doi.org/10.1109/ACCESS.2019.2894527

    Article  Google Scholar 

  • Kuo FF, Kaiser JF (1966) System analysis by digital computer. Wiley, New York

    MATH  Google Scholar 

  • Lavanya P, Satyanarayana P, Mohatram M (2020) Peak to average power ratio reduction of ZT DFT-s-OFDM signals using improved monarch butterfly optimization-PTS scheme. J Amb Intel Hum Comp. https://doi.org/10.1007/s12652-020-01940-0

    Article  Google Scholar 

  • Li J, Bala E, Yang R (2014) Resource block filtered-OFDM for future spectrally agile and power efficient systems. Phys Commun-Amst 11:36–55. https://doi.org/10.1016/j.phycom.2013.10.003

    Article  Google Scholar 

  • Li J, Kearney K, Bala E, Yang R (2015) A resource block based filtered OFDM scheme and performance comparison. In: ICT 2013, Casablanca, Morocco, May 6–8. pp 1–5. https://doi.org/10.1109/ICTEL.2013.6632084

  • Liu Y, Chen X, Zhong Z, Ai B, Miao D, Zhao Z, Sun J, Teng Y, Guan H (2017) Waveform design for 5G networks: analysis and comparison. IEEE Access 5:19282–19292. https://doi.org/10.1109/ACCESS.2017.2664980

    Article  Google Scholar 

  • Lu S, Qu D, He Y (2012) Sliding window tone reservation technique for the peak-to-average power ratio reduction of FBMC-OQAM signals. IEEE Wirel Commun Le 1(4):268–271. https://doi.org/10.1109/WCL.2012.062512.120360

    Article  Google Scholar 

  • Michailow N, Matthé M, Gaspar IS, Caldevilla AN, Mendes LL, Festag A, Fettweis G (2014) Generalized frequency division multiplexing for 5th generation cellular networks. IEEE T Commun 62(9):3045–3061

    Article  Google Scholar 

  • Mitra SK, Kuo Y (2006) Digital signal processing: a computer-based approach, vol 2. McGraw-Hill, New York

    Google Scholar 

  • Oppenheim AV, Schafer RW, Buck JR (2014) Discrete-time signal processing. Pearson, England

    Google Scholar 

  • Qiu Y, Liu Z, Qu D (2017) Filtered bank based implementation for filtered OFDM. In: 2017 7th IEEE international conference on electronics information and emergency communication (ICEIEC), Macau, China, July 21–23. pp 15–18. https://doi.org/10.1109/ICEIEC.2017.8076502

  • Renfors M, Yli-Kaakinen J, Levanen T, Valkama M, Ihalainen T, Vihriala J (2015) Efficient Fast-convolution implementation of filtered CP-OFDM waveform processing for 5G. In: 2015 IEEE globecom workshops (GC Wkshps), San Diego, December 6–10. pp 1–7. https://doi.org/10.1109/GLOCOMW.2015.7414034

  • Schaich F (2010) Filterbank based multi carrier transmission (FBMC)—evolving OFDM: FBMC in the context of WiMAX. In: 2010 European wireless conference (EW), Lucca, Italy, April 12–15. pp 1051–1058. https://doi.org/10.1109/EW.2010.5483518

  • Schaich F, Wild T, Chen Y (2014) Waveform contenders for 5G—suitability for short packet and low latency transmissions. In: 2014 IEEE 79th vehicular technology conference (VTC Spring), Seoul, South Korea, May 18-21. pp 1–5. https://doi.org/10.1109/VTCSpring.2014.7023145

  • Schwarz S, Philosof T, Rupp M (2017) Signal processing challenges in cellular-assisted vehicular communications: efforts and developments within 3GPP LTE and beyond. IEEE Signal Proc Mag 34(2):47–59. https://doi.org/10.1109/MSP.2016.2637938

    Article  Google Scholar 

  • Schwarz S, Rupp M (2016) Society in motion: challenges for LTE and beyond mobile communications. IEEE Commun Mag 54(5):76–83. https://doi.org/10.1109/MCOM.2016.7470939

    Article  Google Scholar 

  • Taher AM, Ahmed MA (2015) Power envelope variation improvement of downlink LTE system using complex number manipulation approach. Diyala J Eng Sci 8(4):618–623

    Google Scholar 

  • Taher MA (2019) Enhanced 5G Throughput Using UFMC Multiplexing. Journal of Southwest Jiaotong University 54(5):1–11

    Article  Google Scholar 

  • Taher MA, Mandeep J, Ismail M, Samad SA, Islam M (2014) Reducing the power envelope fluctuation of OFDM systems using side information supported amplitude clipping approach. Int J Circ Theor App 42(4):425–435. https://doi.org/10.1002/cta.1896

    Article  Google Scholar 

  • Taher MA, Shallal AH, Qaddoori IH (2015) Non-linearity distortion Mitigation of downlink-LTE system using modified amplitude clipping and frequency domain randomization. Diyala J Eng Sci 8(4):613–617

    Google Scholar 

  • Taher MA, Singh MJ, Ismail M, Samad SA, Islam MT, Mahdi HF (2015) Post-IFFT-modified selected mapping to reduce the PAPR of an OFDM system. Circ Syst Signal Process 34(2):535–555. https://doi.org/10.1007/s00034-014-9868-4

    Article  Google Scholar 

  • Taher MA, Singh MJ, Ismail MB, Samad SA, Islam MT (2013) Reducing the PAPR of OFDM systems by random variable transformation. ETRI J 35(4):714–717. https://doi.org/10.4218/etrij.13.0212.0552

    Article  Google Scholar 

  • Wang J, Jin A, Shi D, Wang L, Shen H et al (2017) Spectral efficiency improvement with 5G technologies: results from field tests. IEEE J Sel Area Comm 35(8):1867–1875. https://doi.org/10.1109/JSAC.2017.2713498

    Article  Google Scholar 

  • Wang R, Cai J, Yu X, Jiang J (2019) Temporal-correlation-based compressive channel estimation for universal filtered multicarrier system over fast-fading channels. J Amb Intel Hum Comp 10(5):1681–1692. https://doi.org/10.1007/s12652-017-0593-2

    Article  Google Scholar 

  • Wang X, Wild T, Schaich F, Santos AFd (2014) Universal Filtered multi-carrier with leakage-based filter optimization. In: European wireless 2014; 20th European wireless conference, Barcelona, Spain, May 14–16. pp 1–5

  • Weitkemper P, Bazzi J, Kusume K, Benjebbour A, Kishiyama Y (2016) On regular resource grid for filtered OFDM. IEEE Commun Lett 20(12):2486–2489. https://doi.org/10.1109/LCOMM.2016.2572183

    Article  Google Scholar 

  • Wild T, Schaich F, Chen Y (2014) 5G air interface design based on Universal Filtered (UF-)OFDM. In: 2014 19th international conference on digital signal processing, Hong Kong, China, August 20–23. pp 699–704. https://doi.org/10.1109/ICDSP.2014.6900754

  • Wu D, Zhang X, Qiu J, Gu L, Saito Y, Benjebbour A, Kishiyama Y (2016) A Field Trial of f-OFDM toward 5G. In: 2016 IEEE Globecom Workshops (GC Wkshps), Washington, DC, December 4–8. pp 1–6. https://doi.org/10.1109/GLOCOMW.2016.7848810

  • Yang L, Xu Y (2017) Filtered-OFDM system performance research based on Nuttall’s Blackman-Harris window. In: 2017 IEEE 17th international conference on communication technology (ICCT), Chengdu, China, October 27–30. pp 687–691. https://doi.org/10.1109/ICCT.2017.8359724

  • Zhang X, Jia M, Chen L, Ma J, Qiu J (2014) Filtered-OFDM - enabler for flexible waveform in the 5th generation cellular networks. In: 2015 IEEE global communications conference (GLOBECOM), San Diego, CA, USA, December 6-10, pp 1–6. https://doi.org/10.1109/GLOCOM.2015.7417854

  • Zhou X, Wang C, Tang R, Zhang M (2018) Channel estimation based on statistical frames and confidence level in OFDM systems. Appl Sci 8:1–16

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the help and support introduced in the Space Navigation and Control Laboratory (SNCL) of the Department of Communications Engineering, College of Engineering, University of Diyala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Montadar Abas Taher.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taher, M.A., Radhi, H.S. & Jameil, A.K. Enhanced F-OFDM candidate for 5G applications. J Ambient Intell Human Comput 12, 635–652 (2021). https://doi.org/10.1007/s12652-020-02046-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-02046-3

Keywords

Navigation