Skip to main content
Log in

Thermal stability of natural fibers and their polymer composites

  • Review
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Natural fiber-based composites are applied in many structural engineered products from civil constructions to automobile manufacturing due to the properties such as low density, high aspect ratio, biodegradability and ease to work. During the past decades such composites have been thoroughly studied for their mechanical properties and failure behavior and their properties compared with those of synthetic fiber-based composites. Other properties, such as the thermal behavior of natural fibers and composites, have also been studied because they determine the performance of their products possible. It deals with the effect of temperature on adhesive curing, effect of high temperature and fire damage during fabrication. Further, the thermal properties have equal importance in structural applications such as temperature transfer from end to end, load capacity at specific temperature, material behavior and dimensional stability at high temperature. In this respect the isothermal and non-isothermal thermogravimatric analyses are discussed and the improtance of glass transition temperature is studied during prepapration of composites to ensure their ultimate properties. Although there are several works that have been done on thermal behavior, especially thermogravimetric analysis of natural fibers and their composites, there is no review article available specially focused on natural fiber-based composites, hybrid composites, and nanocomposites. The aim of this review was to focus on the advances in the comprehension of thermogravimetric behavior of natural fibers and compare the effect of natural fibers as reinforced materials in polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Asim M, Jawaid M, Abdan K, Ishak M (2018) The effect of silane treated fiber loading on mechanical properties of pineapple leaf/kenaf fiber filler phenolic composites. J Polym Environ 26:1520–1527

    Article  CAS  Google Scholar 

  2. Cordeiro EP, Pita VJ, Soares BG (2017) Epoxy-fiber of peach palm trees composites: the effect of composition and fiber modification on mechanical and dynamic mechanical properties. J Polym Environ 25:913–924

    Article  CAS  Google Scholar 

  3. Saba N, Jawaid M, Alothman OY, Paridah M, Hassan A (2016) Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. J Reinf Plast Compos 35:447–470

    Article  CAS  Google Scholar 

  4. Asim M, Jawaid M, Abdan K, Ishak M (2017) Dimensional stability of pineapple leaf fiber reinforced phenolic composites. In: AIP conference proceedings, vol 1901, pp 030016

  5. Nasir M, Khali D, Jawaid M, Tahir P, Siakeng R, Asim M, Khan T (2019) Recent development in binderless fiber-board fabrication from agricultural residues: a review. Const Build Mater 211:502–516

    Article  Google Scholar 

  6. Lau KT, Hung PY, Zhu MH, Hui D (2018) Properties of natural fiber composites for structural engineering applications. Compos B 136:222–233

    Article  CAS  Google Scholar 

  7. Agrebi F, Hammami H, Asim M, Jawaid M, Kallel A (2020) Impact of silane treatment on the dielectric properties of pineapple leaf/kenaf fiber reinforced phenolic composites. J Compos Mater 54:937–946

    Article  CAS  Google Scholar 

  8. Sarasini F, Tirillò J, Sergi C, Seghini MC, Cozzarini L, Graupner N (2018) Effect of basalt fiber hybridisation and sizing removal on mechanical and thermal properties of hemp fiber reinforced HDPE composites. Compos Struct 188:394–406

    Article  Google Scholar 

  9. Siakeng R, Jawaid M, Ariffin H, Sapuan S, Asim M, Saba N (2019) Natural fiber reinforced polylactic acid composites: a review. Polym Compos 40:446–463

    Article  CAS  Google Scholar 

  10. Akampumuza O, Wambua P, Ahmed A, Li W, Qin XH (2017) Review of the applications of biocomposites in the automotive industry. Polym Compos 38:2553–2569

    Article  CAS  Google Scholar 

  11. Asim M, Jawaid M, Saba N, Nasir M, Sultan MTH (2017) Processing of hybrid polymer composites—a review. In: Hybrid polymer composite materials, vol 2. Elsevier, pp 1–22

  12. Global natural fiber composite market 2015–2020: trends, forecast, and opportunity analysis, December 2015

  13. Monteiro SN, Calado V, Rodriguez RJS, Margem FM (2012) Thermogravimetric behavior of natural fibers reinforced polymer composites: an overview. Mater Sci Eng A 557:17–28

    Article  CAS  Google Scholar 

  14. Asim M, Jawaid M, Abdan K, Nasir M (2018) Effect of alkali treatments on physical and mechanical strength of pineapple leaf fibers. IOP Conf Ser: Mater Sci Eng 290:012030

  15. Methacanon P, Weerawatsophon U, Sumransin N, Prahsarn C, Bergado D (2010) Properties and potential application of the selected natural fibers as limited life geotextiles. Carbohyd Polym 82:1090–1096

    Article  CAS  Google Scholar 

  16. Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93:90–98

    Article  CAS  Google Scholar 

  17. Beg MDH, Pickering KL (2008) Accelerated weathering of unbleached and bleached Kraft wood fiber reinforced polypropylene composites. Polym Degrad Stab 93:1939–1946

    Article  CAS  Google Scholar 

  18. Puglia D, Monti M, Santulli C, Sarasini F, De Rosa IM, Kenny JM (2013) Effect of alkali and silane treatments on mechanical and thermal behavior of Phormium tenax fibers. Fiber Polym 14:423–427

    Article  CAS  Google Scholar 

  19. Essabir H, Bensalah M, Rodrigue D, Bouhfid R, Qaiss A (2016) Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: fibers and shell particles. Mech Mater 93:134–144

    Article  Google Scholar 

  20. Nasir M, Sulaiman O, Hashim R, Hossain K, Gupta A, Asim M (2015) Rubberwood fiber treatment by laccase enzyme and its application in medium density fiberboard. J Pure Appl Microbiol 9:2095–2100

    Google Scholar 

  21. Ray D, Sarkar BK, Rana A, Bose NR (2001) The mechanical properties of vinylester resin matrix composites reinforced with alkali-treated jute fibers. Compos A 32:119–127

    Article  CAS  Google Scholar 

  22. Alvarez V, Rodriguez E, Vázquez A (2006) Thermal degradation and decomposition of jute/vinylester composites. J Therm Anal Calorim 85:383–389

    Article  CAS  Google Scholar 

  23. Alabdulkarem A, Ali M, Iannace G, Sadek S, Almuzaiqer R (2018) Thermal analysis, microstructure and acoustic characteristics of some hybrid natural insulating materials. Constr Build Mater 187:185–196

    Article  Google Scholar 

  24. Abu-Sharkh B, Hamid H (2004) Degradation study of date palm fiber/polypropylene composites in natural and artificial weathering: mechanical and thermal analysis. Polym Degrad Stab 85:967–973

    Article  CAS  Google Scholar 

  25. Wang W, Sain M, Cooper P (2005) Hygrothermal weathering of rice hull/HDPE composites under extreme climatic conditions. Polym Degrad Stab 90:540–545

    Article  CAS  Google Scholar 

  26. Azwa Z, Yousif B, Manalo A, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibers. Mater Des 47:424–442

    Article  CAS  Google Scholar 

  27. Głowińska E, Datta J, Parcheta P (2017) Effect of sisal fiber filler on thermal properties of bio-based polyurethane composites. J Therm Anal Calorim 130:113–122

    Article  CAS  Google Scholar 

  28. Alvarez V, Vázquez A (2004) Thermal degradation of cellulose derivatives/starch blends and sisal fiber biocomposites. Polym Degrad Stab 84:13–21

    Article  CAS  Google Scholar 

  29. Chen WH, Kuo PC (2011) Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy 36:6451–6460

    Article  CAS  Google Scholar 

  30. Hillier J, Bezzant T, Fletcher TH (2010) Improved method for the determination of kinetic parameters from non-isothermal thermogravimetric analysis (TGA) data. Energy Fuel 24:2841–2847

    Article  CAS  Google Scholar 

  31. Dhyani V, Bhaskar T (2018) Kinetic analysis of biomass pyrolysis. Waste Biorefin 2018:39–83

    Article  Google Scholar 

  32. Sharma P, Choudhary V, Narula AK (2008) Effect of structure of aromatic imide–amines on curing behavior and thermal stability of diglycidyl ether of bisphenol-A. J Appl Polym Sci 107:1946–1953

    Article  CAS  Google Scholar 

  33. Ferdosian F, Yuan Z, Anderson M, Xu CC (2016) Thermal performance and thermal decomposition kinetics of lignin-based epoxy resins. J Anal Appl Pyrol 119:124–132

    Article  CAS  Google Scholar 

  34. Nelson M (2001) A dynamical systems model of the limiting oxygen index test: II. retardancy due to char formation and addition of inert fillers. Combust Theor Model 5:59–83

    Article  CAS  Google Scholar 

  35. Basnet S, Otsuka M, Sasaki C, Asada C, Nakamura Y (2015) Functionalization of the active ingredients of Japanese green tea (Camellia sinensis) for the synthesis of bio-based epoxy resin. Ind Crops Prod 73:63–72

    Article  CAS  Google Scholar 

  36. Aouf C, Le Guernevé C, Caillol S, Fulcrand H (2013) Study of the O-glycidylation of natural phenolic compounds: the relationship between the phenolic structure and the reaction mechanism. Tetrahedron 69:1345–1353

    Article  CAS  Google Scholar 

  37. Benyahya S, Aouf C, Caillol S, Boutevin B, Pascault JP, Fulcrand H (2014) Functionalized green tea tannins as phenolic prepolymers for bio-based epoxy resins. Ind Crops Prod 53:296–307

    Article  CAS  Google Scholar 

  38. Ross CF, Hoye C Jr, Fernandez-Plotka VC (2011) Influence of heating on the polyphenolic content and antioxidant activity of grape seed flour. J Food Sci 76:C884–C890

    Article  CAS  PubMed  Google Scholar 

  39. Khalil HA, Marliana MM, Alshammari T (2011) Material properties of epoxy-reinforced biocomposites with lignin from empty fruit bunch as curing agent. BioResources 6:5206–5223

    Google Scholar 

  40. Aji IS, Zainudin ES, Khalina A, Sapuan SM, Khairul MD (2012) Thermal property determination of hybridized kenaf/PALF reinforced HDPE composite by thermogravimetric analysis. J Therm Anal Calorim 109:893–900

    Article  CAS  Google Scholar 

  41. Asim M, Jawaid M, Paridah MT, Saba N, Nasir M, Shahroze RM (2019) Dynamic and thermo-mechanical properties of hybridized kenaf/PALF reinforced phenolic composites. Polym Compos 40:3814–3822

    Article  CAS  Google Scholar 

  42. De Rosa IM, Santulli C, Sarasini F (2010) Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated Phormium tenax leaf fibers. Mater Des 31:2397–2405

    Article  CAS  Google Scholar 

  43. Manfredi LB, Rodríguez ES, Wladyka-Przybylak M, Vázquez A (2006) Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibers. Polym Degrad Stab 91:255–261

    Article  CAS  Google Scholar 

  44. Arbelaiz A, Fernandez B, Ramos J, Mondragon I (2006) Thermal and crystallization studies of short flax fiber reinforced polypropylene matrix composites: effect of treatments. Thermochim Acta 440:111–121

    Article  CAS  Google Scholar 

  45. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  46. Kumar SS, Duraibabu D, Subramanian K (2014) Studies on mechanical, thermal and dynamic mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites. Mater Des 59:63–69

    Article  CAS  Google Scholar 

  47. Biswas S, Shahinur S, Hasan M, Ahsan Q (2015) Physical, mechanical and thermal properties of jute and bamboo fiber reinforced unidirectional epoxy composites. Procedia Eng 105:933–939

    Article  CAS  Google Scholar 

  48. Gheith MH, Aziz MA, Ghori W, Saba N, Asim M, Jawaid M, Alothman OY (2019) Flexural, thermal and dynamic mechanical properties of date palm fibers reinforced epoxy composites. J Mater Res Technol 8:853–860

    Article  CAS  Google Scholar 

  49. Ridzuan M, Majid MA, Afendi M, Mazlee M, Gibson A (2016) Thermal behaviour and dynamic mechanical analysis of Pennisetum purpureum/glass-reinforced epoxy hybrid composites. Compos Struct 152:850–859

    Article  Google Scholar 

  50. Asim M, Jawaid M, Abdan K, Ishak MR (2016) Effect of alkali and silane treatments on mechanical and fiber-matrix bond strength of kenaf and pineapple leaf fibers. J Bionic Eng 13:426–435

    Article  Google Scholar 

  51. Zadeh KM, Ponnamma D, Al-Maadeed MAA (2017) Date palm fiber filled recycled ternary polymer blend composites with enhanced flame retardancy. Polym Test 61:341–348

    Article  CAS  Google Scholar 

  52. Asim M, Jawaid M, Nasir M, Saba N (2018) Effect of fiber loadings and treatment on dynamic mechanical, thermal and flammability properties of pineapple leaf fiber and kenaf phenolic composites. J Renew Mater 6:383–393

    Article  CAS  Google Scholar 

  53. Nair KM, Thomas S, Groeninckx G (2001) Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibers. Compos Sci Technol 61:2519–2529

    Article  Google Scholar 

  54. Lee YK, Kim DJ, Kim HJ, Hwang TS, Rafailovich M, Sokolov J (2003) Activation energy and curing behavior of resol-and novolac-type phenolic resins by differential scanning calorimetry and thermogravimetric analysis. J Appl Polym Sci 89:2589–2596

    Article  CAS  Google Scholar 

  55. Sreekala M, Kumaran M, Thomas S (1997) Oil palm fibers: morphology, chemical composition, surface modification, and mechanical properties. J Appl Polym Sci 66:821–835

    Article  CAS  Google Scholar 

  56. Akter M, Jahan E, Hasan M (2018) Mechanical, thermal and morphological properties of pineapple and betel nut husk fiber reinforced hybrid polypropylene composites. In: IOP Conference Series: Mater Sci Eng, 2018. vol 1. IOP Publishing, pp 012026

  57. Santos EF, Mauler RS, Nachtigall SM (2009) Effectiveness of maleated-and silanized-PP for coir fiber-filled composites. J Reinf Plast Compos 28:2119–2129

    Article  CAS  Google Scholar 

  58. El-Sabbagh A (2014) Effect of coupling agent on natural fiber in natural fiber/polypropylene composites on mechanical and thermal behaviour. Compos B 57:126–135

    Article  CAS  Google Scholar 

  59. El-Shekeil Y, Sapuan S, Abdan K, Zainudin E (2012) Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites. Mater Des 40:299–303

    Article  CAS  Google Scholar 

  60. Beyler CL, Hirschler MM (2002) Thermal decomposition of polymers. SFPE Handb Fire Protect Eng 2:111–131

    Google Scholar 

  61. Beckermann G, Pickering KL (2008) Engineering and evaluation of hemp fiber reinforced polypropylene composites: fiber treatment and matrix modification. Compos A 39:979–988

    Article  CAS  Google Scholar 

  62. Arrakhiz F, El Achaby M, Malha M, Bensalah M, Fassi-Fehri O, Bouhfid R, Benmoussa K, Qaiss A (2013) Mechanical and thermal properties of natural fibers reinforced polymer composites: Doum/low density polyethylene. Mater Des 43:200–205

    Article  CAS  Google Scholar 

  63. Arrakhiz F, El Achaby M, Benmoussa K, Bouhfid R, Essassi E, Qaiss A (2012) Evaluation of mechanical and thermal properties of Pine cone fibers reinforced compatibilized polypropylene. Mater Des 40:528–535

    Article  CAS  Google Scholar 

  64. Pracella M, Haque MM-U, Alvarez V (2010) Functionalization, compatibilization and properties of polyolefin composites with natural fibers. Polymer 2:554–574

    Article  CAS  Google Scholar 

  65. Araujo J, Waldman W, De Paoli M (2008) Thermal properties of high density polyethylene composites with natural fibers: coupling agent effect. Polym Degrad Stab 93:1770–1775

    Article  CAS  Google Scholar 

  66. Mohanty S, Verma SK, Nayak SK (2006) Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Compos Sci Technol 66:538–547

    Article  CAS  Google Scholar 

  67. Rana A, Mandal A, Bandyopadhyay S (2003) Short jute fiber reinforced polypropylene composites: effect of compatibiliser, impact modifier and fiber loading. Compos Sci Technol 63:801–806

    Article  CAS  Google Scholar 

  68. Halden RU (2010) Plastics and health risks. Annu Rev Publ Health 31:179–194

    Article  Google Scholar 

  69. Williams CK, Hillmyer MA (2008) Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polym Rev 48:1–10

    Article  CAS  Google Scholar 

  70. Fertier L, Koleilat H, Stemmelen M, Giani O, Joly-Duhamel C, Lapinte V, Robin JJ (2013) The use of renewable feedstock in UV-curable materials—a new age for polymers and green chemistry. Prog Polym Sci 38:932–962

    Article  CAS  Google Scholar 

  71. Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290

    Article  CAS  Google Scholar 

  72. USDA N (2015) Crop Production 2014 Summary. National Agricultural Statistics Service United States, Department of Agriculture, Washington

    Google Scholar 

  73. Zhang C, Garrison TF, Madbouly SA, Kessler MR (2017) Recent advances in vegetable oil-based polymers and their composites. Prog Polym Sci 71:91–143

    Article  CAS  Google Scholar 

  74. Goriparthi BK, Suman K, Rao NM (2012) Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos A 43:1800–1808

    Article  CAS  Google Scholar 

  75. Kabir M, Wang H, Lau K, Cardona F, Aravinthan T (2012) Mechanical properties of chemically-treated hemp fiber reinforced sandwich composites. Compos B 43:159–169

    Article  CAS  Google Scholar 

  76. Rosa MF, Chiou B-s, Medeiros ES, Wood DF, Williams TG, Mattoso LH, Orts WJ, Imam SH (2009) Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites. Bioresour Technol 100:5196–5202

    Article  CAS  PubMed  Google Scholar 

  77. Bakare I, Okieimen F, Pavithran C, Khalil HA, Brahmakumar M (2010) Mechanical and thermal properties of sisal fiber-reinforced rubber seed oil-based polyurethane composites. Mater Des 31:4274–4280

    Article  CAS  Google Scholar 

  78. Mishra S, Mohanty AK, Drzal LT, Misra M, Hinrichsen G (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289:955–974

    Article  CAS  Google Scholar 

  79. Zhou Q, Zhang L, Zhang M, Wang B, Wang S (2003) Miscibility, free volume behavior and properties of blends from cellulose acetate and castor oil-based polyurethane. Polymer 44:1733–1739

    Article  CAS  Google Scholar 

  80. Yussuf A, Massoumi I, Hassan A (2010) Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Polym Environ 18:422–429

    Article  CAS  Google Scholar 

  81. Zhao Q, Tao J, Yam RC, Mok AC, Li RK, Song C (2008) Biodegradation behavior of polycaprolactone/rice husk ecocomposites in simulated soil medium. Polym Degrad Stab 93:1571–1576

    Article  CAS  Google Scholar 

  82. Martin AR, Martins MA, da Silva OR, Mattoso LH (2010) Studies on the thermal properties of sisal fiber and its constituents. Thermo Acta 506:14–19

    Article  CAS  Google Scholar 

  83. Marichelvam M, Jawaid M, Asim M (2019) Corn and rice starch-based bio-plastics as alternative packaging materials. Fiber 7:32

    Article  CAS  Google Scholar 

  84. Junior AC, Barreto A, Rosa D, Maia F, Lomonaco D, Mazzetto S (2015) Thermal and mechanical properties of biocomposites based on a cashew nut shell liquid matrix reinforced with bamboo fibers. J Compos Mater 49:2203–2215

    Article  CAS  Google Scholar 

  85. Rout R, Jena S, Das S (2003) Spectral and thermal studies of biomass cured phenolic resin polymers. Biomass Bioenergy 25:329–334

    Article  CAS  Google Scholar 

  86. Silva ALd, Silva LRRd, Camargo IdA, Agostini DLdS, Rosa DdS, Oliveira DLVd, Fechine PBA, Mazzetto SE (2016) Cardanol-based thermoset plastic reinforced by sponge gourd fibers (Luffa cylindrica). Polímeros 26:21–29

    Article  Google Scholar 

  87. Modibbo U, Aliyu B, Nkafamiya I, Manji A (2007) The effect of moisture imbibition on cellulosic bast fibers as industrial raw materials. Int J Phys Sci 2:163–168

    Google Scholar 

  88. Szcześniak L, Rachocki A, Tritt-Goc J (2008) Glass transition temperature and thermal decomposition of cellulose powder. Cellulose 15:445–451

    Article  CAS  Google Scholar 

  89. Thakur V, Singha A, Thakur M (2012) Biopolymers based green composites: mechanical, thermal and physico-chemical characterization. J Polym Environ 20:412–421

    Article  CAS  Google Scholar 

  90. Fortunati E, Armentano I, Iannoni A, Kenny J (2010) Development and thermal behaviour of ternary PLA matrix composites. Polym Degrad Stab 95:2200–2206

    Article  CAS  Google Scholar 

  91. Nasir M, Gupta A, Beg M, Chua GK, Jawaid M, Kumar A, Khan TA (2013) Fabricating eco-friendly binderless fiberboard from laccase-treated rubber wood fiber. BioResources 8:3599–3608

    Article  Google Scholar 

  92. Quintana E, Valls C, Barneto AG, Vidal T, Ariza J, Roncero MB (2015) Studying the effects of laccase treatment in a softwood dissolving pulp: cellulose reactivity and crystallinity. Carbohyd Polym 119:53–61

    Article  CAS  Google Scholar 

  93. Zhu Z, Wu H, Ye C, Fu W (2017) Enhancement on mechanical and thermal properties of PLA biocomposites due to the addition of hybrid sisal fibers. J Nat Fiber 14:875–886

    Article  CAS  Google Scholar 

  94. Qian S, Sheng K, Yao W, Yu H (2016) Poly (lactic acid) biocomposites reinforced with ultrafine bamboo-char: morphology, mechanical, thermal, and water absorption properties. J Appl Polym Sci 133:43425

    Article  CAS  Google Scholar 

  95. Ahmad E, Luyt A (2012) Morphology, thermal, and dynamic mechanical properties of poly (lactic acid)/sisal whisker nanocomposites. Polym Compos 33:1025–1032

    Article  CAS  Google Scholar 

  96. Torres-Tello EV, Robledo-Ortíz JR, González-García Y, Pérez-Fonseca AA, Jasso-Gastinel CF, Mendizábal E (2017) Effect of agave fiber content in the thermal and mechanical properties of green composites based on polyhydroxybutyrate or poly (hydroxybutyrate-co-hydroxyvalerate). Ind Crop Prod 99:117–125

    Article  CAS  Google Scholar 

  97. Bhardwaj R, Mohanty AK, Drzal L, Pourboghrat F, Misra M (2006) Renewable resource-based green composites from recycled cellulose fiber and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic. Biomacromol 7:2044–2051

    Article  CAS  Google Scholar 

  98. Espinach F, Boufi S, Delgado-Aguilar M, Julián F, Mutjé P, Méndez J (2018) Composites from poly (lactic acid) and bleached chemical fibers: thermal properties. Compos B 134:169–176

    Article  CAS  Google Scholar 

  99. Reixach R, Puig J, Méndez JA, Gironès J, Espinach FX, Arbat G, Mutjé P (2015) Orange wood fiber reinforced polypropylene composites: thermal properties. BioResources 10:2156–2166

    Google Scholar 

  100. Shibata S, Cao Y, Fukumoto I (2008) Flexural modulus of the unidirectional and random composites made from biodegradable resin and bamboo and kenaf fibers. Compos A 39:640–646

    Article  CAS  Google Scholar 

  101. Asim M, Paridah M, Saba N, Jawaid M, Alothman OY, Nasir M, Almutairi Z (2018) Thermal, physical properties and flammability of silane treated kenaf/pineapple leaf fibers phenolic hybrid composites. Compos Struct 202:1330–1338

    Article  Google Scholar 

  102. Jawaid M, Khalil HA, Alattas OS (2012) Woven hybrid biocomposites: dynamic mechanical and thermal properties. Compos A 43:288–293

    Article  CAS  Google Scholar 

  103. Ray D, Sarkar B, Das S, Rana A (2002) Dynamic mechanical and thermal analysis of vinylester-resin-matrix composites reinforced with untreated and alkali-treated jute fibers. Compos Sci Technol 62:911–917

    Article  CAS  Google Scholar 

  104. Panthapulakkal S, Sain M (2007) Injection-molded short hemp fiber/glass fiber-reinforced polypropylene hybrid composites: mechanical, water absorption and thermal properties. J Appl Polym Sci 103:2432–2441

    Article  CAS  Google Scholar 

  105. Braga R, Magalhaes P Jr (2015) Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites. Mater Sci Eng C 56:269–273

    Article  CAS  Google Scholar 

  106. Jamshaid H, Mishra R, Militky J, Pechociakova M, Noman MT (2016) Mechanical, thermal and interfacial properties of green composites from basalt and hybrid woven fabrics. Fiber Polym 17:1675–1686

    Article  CAS  Google Scholar 

  107. Boopalan M, Niranjanaa M, Umapathy M (2013) Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Compos B 51:54–57

    Article  CAS  Google Scholar 

  108. Jawaid M, Khalil HA, Hassan A, Dungani R, Hadiyane A (2013) Effect of jute fiber loading on tensile and dynamic mechanical properties of oil palm epoxy composites. Compos B 45:619–624

    Article  CAS  Google Scholar 

  109. Threepopnatkul P, Kaerkitcha N, Athipongarporn N (2009) Effect of surface treatment on performance of pineapple leaf fiber-polycarbonate composites. Compos B 40:628–632

    Article  CAS  Google Scholar 

  110. Huda M, Drzal L, Mohanty A, Misra M (2007) The effect of silane treated-and untreated-talc on the mechanical and physico-mechanical properties of poly (lactic acid)/newspaper fibers/talc hybrid composites. Compos B 38:367–379

    Article  CAS  Google Scholar 

  111. Nayak SK, Mohanty S (2010) Sisal glass fiber reinforced PP hybrid composites: effect of MAPP on the dynamic mechanical and thermal properties. J Reinf Plast Compos 29:1551–1568

    Article  CAS  Google Scholar 

  112. Jawaid M, Alothman OY, Saba N, Tahir PM, Khalil HA (2015) Effect of fibers treatment on dynamic mechanical and thermal properties of epoxy hybrid composites. Polym Compos 36:1669–1674

    Article  CAS  Google Scholar 

  113. Arrakhiz F, Elachaby M, Bouhfid R, Vaudreuil S, Essassi M, Qaiss A (2012) Mechanical and thermal properties of polypropylene reinforced with Alfa fiber under different chemical treatment. Mater Des 35:318–322

    Article  CAS  Google Scholar 

  114. Nayak SK, Mohanty S, Samal SK (2009) Influence of short bamboo/glass fiber on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites. Mater Sci Eng A 523:32–38

    Article  CAS  Google Scholar 

  115. Samal SK, Mohanty S, Nayak SK (2009) Banana/glass fiber-reinforced polypropylene hybrid composites: fabrication and performance evaluation. Polym Plast Technol Eng 48:397–414

    Article  CAS  Google Scholar 

  116. Bakar NA, Chee CY, Abdullah LC, Ratnam CT, Ibrahim NA (2015) Thermal and dynamic mechanical properties of grafted kenaf filled poly (vinyl chloride)/ethylene vinyl acetate composites. Mater Des 65:204–211

    Article  CAS  Google Scholar 

  117. Ibrahim NA, Yunus WMZW, Abu-Ilaiwi FA, Rahman MZA, Bin Ahmad M, Dahlan KZM (2003) Graft copolymerization of methyl methacrylate onto oil palm empty fruit bunch fiber using H2O2/Fe2+as an initiator. J Appl Polym Sci 89:2233–2238

    Article  CAS  Google Scholar 

  118. Atiqah A, Jawaid M, Sapuan S, Ishak M, Alothman OY (2018) Thermal properties of sugar palm/glass fiber reinforced thermoplastic polyurethane hybrid composites. Compos Struct 202:954–958

    Article  Google Scholar 

  119. Kc B, Tjong J, Jaffer S, Sain M (2018) Thermal and dimensional stability of injection-molded sisal-glass fiber hybrid PP biocomposites. J Polym Environ 26:1279–1289

    Article  CAS  Google Scholar 

  120. Idicula M, Neelakantan N, Oommen Z, Joseph K, Thomas S (2005) A study of the mechanical properties of randomly oriented short banana and sisal hybrid fiber reinforced polyester composites. J Appl Polym Sci 96:1699–1709

    Article  CAS  Google Scholar 

  121. Ademuwagun A, Myers J (2014) Biobased fillers for polypropylene for interior application. SAE Technical Paper

  122. Norberg I (2012) Carbon fibers from kraft lignin. KTH Royal Institute of Technology, Stockholm

    Google Scholar 

  123. Birat K, Panthapulakkal S, Kronka A, Agnelli JAM, Tjong J, Sain M (2015) Hybrid biocomposites with enhanced thermal and mechanical properties for structural applications. J Appl Polym Sci 132:42452

    Article  CAS  Google Scholar 

  124. El-Shekeil Y, Sapuan S, Jawaid M, Al-Shuja’a O (2014) Influence of fiber content on mechanical, morphological and thermal properties of kenaf fibers reinforced poly (vinyl chloride)/thermoplastic polyurethane poly-blend composites. Mater Des 58:130–135

    Article  CAS  Google Scholar 

  125. Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J (2017) Thermal, mechanical, and physical properties of seaweed/sugar palm fiber reinforced thermoplastic sugar palm Starch/Agar hybrid composites. Int J Biol Macromol 97:606–615

    Article  CAS  PubMed  Google Scholar 

  126. Sanyang ML, Sapuan SM, Jawaid M, Ishak MR, Sahari J (2015) Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (Arenga pinnata) starch. Polymer 7:1106–1124

    Article  CAS  Google Scholar 

  127. Prachayawarakorn J, Chaiwatyothin S, Mueangta S, Hanchana A (2013) Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites. Mater Des 47:309–315

    Article  CAS  Google Scholar 

  128. Prachayawarakorn J, Limsiriwong N, Kongjindamunee R, Surakit S (2012) Effect of agar and cotton fiber on properties of thermoplastic waxy rice starch composites. J Polym Environ 20:88–95

    Article  CAS  Google Scholar 

  129. Nascimento T, Calado V, Carvalho C (2012) Development and characterization of flexible film based on starch and passion fruit mesocarp flour with nanoparticles. Food Res Int 49:588–595

    Article  CAS  Google Scholar 

  130. Sanchez-Silva L, López-González D, Garcia-Minguillan A, Valverde J (2013) Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae. Bioresour Technol 130:321–331

    Article  CAS  PubMed  Google Scholar 

  131. Ross A, Jones J, Kubacki M, Bridgeman T (2008) Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour Technol 99:6494–6504

    Article  CAS  PubMed  Google Scholar 

  132. Hamid MRY, Ab Ghani MH, Ahmad S (2012) Effect of antioxidants and fire retardants as mineral fillers on the physical and mechanical properties of high loading hybrid biocomposites reinforced with rice husks and sawdust. Ind Crop Prod 40:96–102

    Article  CAS  Google Scholar 

  133. Kord B (2011) Effect of calcium carbonate as mineral filler on the physical and mechanical properties of wood based composites. World Appl Sci J 13:129–132

    CAS  Google Scholar 

  134. Zhao Q, Zhang B, Quan H, Yam RC, Yuen RK, Li RK (2009) Flame retardancy of rice husk-filled high-density polyethylene ecocomposites. Compos Sci Technol 69:2675–2681

    Article  CAS  Google Scholar 

  135. Siakeng R, Jawaid M, Ariffin H, Sapuan S (2019) Mechanical, dynamic, and thermomechanical properties of coir/pineapple leaf fiber reinforced polylactic acid hybrid biocomposites. Polym Compos 40:2000–2011

    Article  CAS  Google Scholar 

  136. Sathishkumar T, Ja N, Satheeshkumar S (2014) Hybrid fiber reinforced polymer composites—a review. J Reinf Plast Compos 33:454–471

    Article  CAS  Google Scholar 

  137. Siakeng R, Jawaid M, Ariffin H, Sapuan S (2018) Thermal properties of coir and pineapple leaf fiber reinforced polylactic acid hybrid composites. In: IOP Conference Series: Mater Sci Eng 2018. vol 1. IOP Publishing, p 012019

  138. Jang JY, Jeong TK, Oh HJ, Youn JR, Song YS (2012) Thermal stability and flammability of coconut fiber reinforced poly (lactic acid) composites. Compos B 43:2434–2438

    Article  CAS  Google Scholar 

  139. Siakeng MJ, Asim M, Saba N, Sanjay MR, Siengchin S, Foud H (2020) Alkali treated coir/pineapple leaf fibers reinforced PLA hybrid composites: evaluation of mechanical, morphological, thermal and physical properties. Express Polym Lett (accepted)

  140. Islam MS, Ramli IB, Hasan M, Islam MM, Islam KN, Hasan M, Harmaen AS (2017) Effect of kenaf and EFB fiber hybridization on physical and thermo-mechanical properties of PLA biocomposites. Fiber Polym 18:116–121

    Article  CAS  Google Scholar 

  141. Asaithambi B, Ganesan GS, Ananda Kumar S (2017) Banana/sisal fibers reinforced poly (lactic acid) hybrid biocomposites; influence of chemical modification of BSF towards thermal properties. Polym Compos 38:1053–1062

    Article  CAS  Google Scholar 

  142. Carrasco F, Pagès P, Gámez-Pérez J, Santana O, Maspoch ML (2010) Processing of poly (lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym Degrad Stab 95:116–125

    Article  CAS  Google Scholar 

  143. Tee YB, Talib RA, Abdan K, Chin NL, Basha RK, Yunos KFM (2013) Thermally grafting aminosilane onto kenaf-derived cellulose and its influence on the thermal properties of poly (lactic acid) composites. BioResources 8:4468–4483

    Article  Google Scholar 

  144. Zainudin E, Sapuan S, Abdan K, Mohamad M (2009) Thermal degradation of banana pseudo-stem filled unplasticized polyvinyl chloride (UPVC) composites. Mater Des 30:557–562

    Article  CAS  Google Scholar 

  145. Kim KW, Lee BH, Kim HJ, Sriroth K, Dorgan JR (2011) Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites. J Therm Anal Calorim 108:1131–1139

    Article  CAS  Google Scholar 

  146. Almeida E, Frollini E, Castellan A, Coma V (2010) Chitosan, sisal cellulose, and biocomposite chitosan/sisal cellulose films prepared from thiourea/NaOH aqueous solution. Carbohydr Polym 80:655–664

    Article  CAS  Google Scholar 

  147. Oliveira M, Furtado R, Bastos M, Leitão R, Benevides S, Muniz C, Cheng H, Biswas A (2018) Performance evaluation of cashew gum and gelatin blend for food packaging. Food Packag Shelf 17:57–64

    Article  Google Scholar 

  148. Mohajer S, Rezaei M, Hosseini SF (2017) Physico-chemical and microstructural properties of fish gelatin/agar bio-based blend films. Carbohydr Polym 157:784–793

    Article  CAS  PubMed  Google Scholar 

  149. Tongdeesoontorn W, Mauer LJ, Wongruong S, Sriburi P, Rachtanapun P (2011) Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chem Cent J 5:1–6

    Article  CAS  Google Scholar 

  150. Qiao C, Ma X, Zhang J, Yao J (2017) Molecular interactions in gelatin/chitosan composite films. Food Chem 235:45–50

    Article  CAS  PubMed  Google Scholar 

  151. Wang X, Hu Y, Song L, Xing W, Lu H (2010) Thermal degradation behaviors of epoxy resin/POSS hybrids and phosphorus–silicon synergism of flame retardancy. J Polym Sci Pol Phys 48:693–705

    Article  CAS  Google Scholar 

  152. Arshad M, Kaur M, Ullah A (2016) Green biocomposites from nanoengineered hybrid natural fiber and biopolymer. ACS Sustain Chem Eng 4:1785–1793

    Article  CAS  Google Scholar 

  153. Saba N, Jawaid M, Asim M (2019) Nanocomposites with nanofibers and fillers from renewable resources. Green Compos Automot Appl 2019:145–170

    Article  Google Scholar 

  154. Azeez AA, Rhee KY, Park SJ, Hui D (2013) Epoxy clay nanocomposites–processing, properties and applications: a review. Compos B 45:308–320

    Article  CAS  Google Scholar 

  155. Kaymakci A, Gulec T, Hosseinihashemi SK, Ayrilmis N (2017) Physical, mechanical and thermal properties of wood/zeolite/plastic hybrid composites. Maderas Cienc Tecnol 19:339–348

    CAS  Google Scholar 

  156. Idumah CI, Hassan A (2017) Hibiscus cannabinus fiber/PP based nano-biocomposites reinforced with graphene nanoplatelets. J Nat Fiber 14:691–706

    Article  CAS  Google Scholar 

  157. Sajna V, Mohanty S, Nayak SK (2017) A study on thermal degradation kinetics and flammability properties of poly (lactic acid)/banana fiber/nanoclay hybrid bionanocomposites. Polym Compos 38:2067–2079

    Article  CAS  Google Scholar 

  158. Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly (lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68:424–432

    Article  CAS  Google Scholar 

  159. Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers? Part II: an overview on thermal decomposition of polycondensation polymers. Thermochim Acta 523:25–45

    Article  CAS  Google Scholar 

  160. Qian S, Sheng K (2017) PLA toughened by bamboo cellulose nanowhiskers: role of silane compatibilization on the PLA bionanocomposite properties. Compos Sci Technol 148:59–69

    Article  CAS  Google Scholar 

  161. Sun P, Liu G, Lv D, Dong X, Wu J, Wang D (2015) Effective activation of halloysite nanotubes by piranha solution for amine modification via silane coupling chemistry. RSC Adv 5:52916–52925

    Article  CAS  Google Scholar 

  162. Saini S, Belgacem MN, Salon MCB, Bras J (2016) Non leaching biomimetic antimicrobial surfaces via surface functionalisation of cellulose nanofibers with aminosilane. Cellulose 23:795–810

    Article  CAS  Google Scholar 

  163. Gwon JG, Cho HJ, Chun SJ, Lee S, Wu Q, Lee SY (2016) Physiochemical, optical and mechanical properties of poly (lactic acid) nanocomposites filled with toluene diisocyanate grafted cellulose nanocrystals. RSC Adv 6:9438–9445

    Article  CAS  Google Scholar 

  164. Adel A, El-Shafei A, Ibrahim A, Al-Shemy M (2018) Extraction of oxidized nanocellulose from date palm (Phoenix Dactylifera L.) sheath fibers: Influence of CI and CII polymorphs on the properties of chitosan/bionanocomposite films. Ind Crop Prod 124:155–165

    Article  CAS  Google Scholar 

  165. Choo K, Ching YC, Chuah CH, Julai S, Liou NS (2016) Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Material 9:644

    Article  CAS  Google Scholar 

  166. Jafari M, Davachi SM, Mohammadi-Rovshandeh J, Pouresmaeel-Selakjani P (2018) Preparation and characterization of bionanocomposites based on benzylated wheat straw and nanoclay. J Polym Environ 26:913–925

    Article  CAS  Google Scholar 

  167. Han R, Zhang L, Song C, Zhang M, Zhu H, Zhang L (2010) Characterization of modified wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode. Carbohydr Polym 79:1140–1149

    Article  CAS  Google Scholar 

  168. Di Y, Iannace S, Di Maio E, Nicolais L (2003) Nanocomposites by melt intercalation based on polycaprolactone and organoclay. J Polym Sci Pol Phys 41:670–678

    Article  CAS  Google Scholar 

  169. Seyfi J, Hejazi I, Mohamad Sadeghi GM, Davachi SM, Ghanbar S (2012) Thermal degradation and crystallization behavior of blend-based nanocomposites: role of clay network formation. J Appl Polym Sci 123:2492–2499

    Article  CAS  Google Scholar 

  170. Montes S, Etxeberria A, Mocholi V, Rekondo A, Grande H, Labidi J (2018) Effect of combining cellulose nanocrystals and graphene nanoplatelets on the properties of poly (lactic acid) based films. Express Polym Lett 12:543–555

    Article  CAS  Google Scholar 

  171. Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly (lactic acid) crystallization. Prog Polym Sci 37:1657–1677

    Article  CAS  Google Scholar 

  172. Monteiro SN, Calado V, Rodriguez RJ, Margem FM (2012) Thermogravimetric stability of polymer composites reinforced with less common lignocellulosic fibers—an overview. J Mater Res Technol 1:117–126

    Article  CAS  Google Scholar 

  173. Dorez G, Taguet A, Ferry L, Lopez-Cuesta J (2013) Thermal and fire behavior of natural fibers/PBS biocomposites. Polym Degrad Stab 98:87–95

    Article  CAS  Google Scholar 

  174. Indran S, Raj RE (2015) Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohyd Polym 117:392–399

    Article  CAS  Google Scholar 

  175. Asim M, Abdan K, Jawaid M, Nasir M, Dashtizadeh Z, Ishak M, Hoque ME (2015) A review on pineapple leaves fiber and its composites. Int J Polym Sci 2015:1–16

    Article  Google Scholar 

  176. Álvarez A, Pizarro C, García R, Bueno J, Lavín A (2016) Determination of kinetic parameters for biomass combustion. Bioresour Technol 216:36–43

    Article  PubMed  CAS  Google Scholar 

  177. Azwa Z, Yousif B (2013) Thermal degredation study of kenaf fiber/epoxy composites using thermo gravimetric analysis. In: Proceedings of the 3rd Malaysian Postgraduate Conference (MPC 2013), 2013. Education Malaysia, pp 256–264

  178. Asim M, Jawaid M, Paridah MT, Nasir M (2019) Thermo-gravimetric analysis of various ratio of blended phenolic and epoxy composites. IJITEE 9:5435–5439

    Article  Google Scholar 

  179. Rojo E, Alonso MV, Oliet M, Del Saz-Orozco B, Rodriguez F (2015) Effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites. Compos B 68:185–192

    Article  CAS  Google Scholar 

  180. Del Saz-Orozco B, Alonso MV, Oliet M, Domínguez JC, Rodriguez F (2015) Mechanical, thermal and morphological characterization of cellulose fiber-reinforced phenolic foams. Compos B 75:367–372

    Article  CAS  Google Scholar 

  181. Singha A, Thakur VK (2008) Mechanical, morphological and thermal properties of pine needle-reinforced polymer composites. Int J Polym Mater 58:21–31

    Article  CAS  Google Scholar 

  182. Mehta G, Drzal LT, Mohanty AK, Misra M (2006) Effect of fiber surface treatment on the properties of biocomposites from nonwoven industrial hemp fiber mats and unsaturated polyester resin. J Appl Polym Sci 99:1055–1068

    Article  CAS  Google Scholar 

  183. Dhakal H, Zhang Z, Bennett N (2012) Influence of fiber treatment and glass fiber hybridisation on thermal degradation and surface energy characteristics of hemp/unsaturated polyester composites. Compos B 43:2757–2761

    Article  CAS  Google Scholar 

  184. Nadlene R, Sapuan S, Jawaid M, Ishak M, Yusriah L (2018) The effects of chemical treatment on the structural and thermal, physical, and mechanical and morphological properties of roselle fiber-reinforced vinyl ester composites. Polym Compos 39:274–287

    Article  CAS  Google Scholar 

  185. Shahroze RM, Ishak MR, Salit MS, Leman Z, Chandrasekar M, Munawar NS, Asim M (2019) Sugar palm fiber/polyester nanocomposites: influence of adding nanoclay fillers on thermal, dynamic mechanical, and physical properties. J Vinyl Addit Technol. https://doi.org/10.1002/vnl.21736

  186. Du Y, Wu T, Yan N, Kortschot MT, Farnood R (2013) Pulp fiber-reinforced thermoset polymer composites: effects of the pulp fibers and polymer. Compos B 48:10–17

    Article  CAS  Google Scholar 

  187. Elkhaoulani A, Arrakhiz F, Benmoussa K, Bouhfid R, Qaiss A (2013) Mechanical and thermal properties of polymer composite based on natural fibers: moroccan hemp fibers/polypropylene. Mater Des 49:203–208

    Article  CAS  Google Scholar 

  188. Essabir H, Nekhlaoui S, Malha M, Bensalah M, Arrakhiz F, Qaiss A, Bouhfid R (2013) Bio-composites based on polypropylene reinforced with almond shells particles: mechanical and thermal properties. Mater Des 51:225–230

    Article  CAS  Google Scholar 

  189. El Mechtali FZ, Essabir H, Nekhlaoui S, Bensalah MO, Jawaid M, Bouhfid R, Qaiss A (2015) Mechanical and thermal properties of polypropylene reinforced with almond shells particles: Impact of chemical treatments. J Bionic Eng 12:483–494

    Article  Google Scholar 

  190. Radzi A, Sapuan S, Jawaid M, Mansor M (2017) Influence of fiber contents on mechanical and thermal properties of roselle fiber reinforced polyurethane composites. Fiber Polym 18:1353–1358

    Article  CAS  Google Scholar 

  191. Sreenivasan V, Rajini N, Alavudeen A, Arumugaprabu V (2015) Dynamic mechanical and thermo-gravimetric analysis of Sansevieria cylindrica/polyester composite: effect of fiber length, fiber loading and chemical treatment. Compos B 69:76–86

    Article  CAS  Google Scholar 

  192. Asim M, Saba N, Jawaid M, Nasir M, Pervaiz M, Alothman OY (2018) A review on phenolic resin and its composites. Curr Anal Chem 14:185–197

    Article  CAS  Google Scholar 

  193. Lee SM, Cho D, Park WH, Lee SG, Han SO, Drzal LT (2005) Novel silk/poly (butylene succinate) biocomposites: the effect of short fiber content on their mechanical and thermal properties. Compos Sci Technol 65:647–657

    Article  CAS  Google Scholar 

  194. Nam TH, Ogihara S, Nakatani H, Kobayashi S, Song JI (2012) Mechanical and thermal properties and water absorption of jute fiber reinforced poly (butylene succinate) biodegradable composites. Adv Compos Mater 21:241–258

    Article  CAS  Google Scholar 

  195. Srinivasan V, Boopathy SR, Sangeetha D, Ramnath BV (2014) Evaluation of mechanical and thermal properties of banana–flax based natural fiber composite. Mater Des 60:620–627

    Article  CAS  Google Scholar 

  196. AlMaadeed MA, Kahraman R, Khanam PN, Madi N (2012) Date palm wood flour/glass fiber reinforced hybrid composites of recycled polypropylene: mechanical and thermal properties. Mater Des 42:289–294

    Article  CAS  Google Scholar 

  197. Ying-Chen Z, Hong-Yan W, Yi-Ping Q (2010) Morphology and properties of hybrid composites based on polypropylene/polylactic acid blend and bamboo fiber. Bioresour Technol 101:7944–7950

    Article  PubMed  CAS  Google Scholar 

  198. Park HM, Lee WK, Park CY, Cho WJ, Ha CS (2003) Environmentally friendly polymer hybrids: part I mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J Mater Sci 38:909–915

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude and sincere appreciation to the Department of Biocomposite and Technology, and Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia for their scientific assistance and support to help accomplish this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Jawaid or Mohammed Nasir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asim, M., Paridah, M.T., Chandrasekar, M. et al. Thermal stability of natural fibers and their polymer composites. Iran Polym J 29, 625–648 (2020). https://doi.org/10.1007/s13726-020-00824-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-020-00824-6

Keywords

Navigation