Skip to main content
Log in

Development and Realization of Fe–C and Co–C Eutectic Fixed-Point Blackbodies for Radiation Thermometry at CSIR-NPL

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A series of metal–carbon (M–C) eutectics with robust reproducible melting phase transitions are evolving as the reference high-temperature fixed-points up to 3000 °C for radiation thermometry. The mise-en-pratique prepared for the realization and dissemination of new kelvin allows the use of set of M-C blackbody fixed-points or a combination of M-C fixed-points along with silver (Ag), gold (Au) or copper (Cu) blackbodies for the direct measurement of thermodynamic temperatures at high-temperature range. The iron–carbon (Fe–C) [1153 °C] and cobalt–carbon (Co–C) [1324 °C] fixed-point cells are the doorway to high temperature above a copper fixed-point. This paper describes the in-house development of Fe–C and Co–C eutectic graphite crucible blackbodies and their realizations by linear spectral pyrometer (LP4, 650 nm) at CSIR-NPL, National Metrology Institute (NMI) of India. The novel design and assembly approaches were employed to fabricate the blackbody crucibles with 120o inner-well cone, 100 mm ingot length and 8 mm aperture diameter with 0.9997 emissivity and robust thermo-mechanical stability. The eutectic ingots were prepared by multiple fillings of the homogeneously ground and mixed powders with 4.2 and 2.6 weight percentage of carbon in Fe and Co, respectively. Repeatability of measured melting plateau and uncertainty of the temperature measurement for both Fe–C and Co–C cells are presented. The ITS-90 temperatures (T90) to these M-C fixed-points were assigned by a spectral radiance ratio measurement (Planck’s Law) relative to the freezing point of Ag [961.78 °C]. The T90 temperatures thus determined for Fe–C and Co–C blackbody fixed-point cells are 1154.05 °C and 1323.93 °C with the expanded uncertainty of 0.37 °C and 0.50 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Yamada, B. Khlevnoy, Y. Wang, T. Wang, K. Anhalt, Metrologia 43, 139 (2006)

    Google Scholar 

  2. H. Preston-Thomas, Metrologia 27, Z186 (1990)

    Article  Google Scholar 

  3. E.R. Woolliams, G. Machin, D.H. Lowe, R. Winkler, Metrologia 43, R11 (2006)

    Article  ADS  Google Scholar 

  4. Y. Yamada, H. Sakate, F. Sakuma and A. Ono, in Proc. 7th Int. Symp. Temp. Therm. Meas. Ind. Sci. (Proceedings 7th International symposium on temperature and thermal measurements in industry and science (Tempmeko) (Delft, The Netherlands: IMEKO/NMi), 1999), pp. 535–540

  5. Y. Yamada, H. Sakate, F. Sakuma, A. Ono, Metrologia 36, 207 (1999)

    Article  ADS  Google Scholar 

  6. F. Edler, Y. Kim, G. Machin, J. Pearce, D. White, Guide on secondary thermometry: specialized fixed points above 0°C BIPM (2018) P1-36

  7. CCT-BIPM, Mise en pratique for the definition of the kelvin in the SI, 1-13 (2019) https://www.bipm.org/utils/en/pdf/si-mep/SI-App2-kelvin.pdf

  8. G. Machin, P. Bloembergen, K. Anhalt, J. Hartmann, M. Sadli, P. Saunders, E. Woolliams, Y. Yamada, H. Yoon, Int. J. Thermophys. 31, 1779 (2010)

    Article  ADS  Google Scholar 

  9. G. Machin, K. Anhalt, P. Bloembergen, M. Sadli, P. Saunders, Y. Yamada, and H. Yoon, 2-5 (2012). https://www.bipm.org/utils/en/pdf/si-mep/MeP-K-2018_Relative_Primary_Radiometry.pdf

  10. G. Machin, P. Bloembergen, J. Hartmann, M. Sadli, Y. Yamada, Int. J. Thermophys. 28, 1976 (2007)

    Article  ADS  Google Scholar 

  11. M. Sadli, P. Bloembergen, B. Khlevnoy, T. Wang, Y. Yamada, G. Machin, Int. J. Thermophys. 32, 1786 (2011)

    Article  ADS  Google Scholar 

  12. J. Hartmann, K. Anhalt, E. Schreiber, and Y. Yamada, in Temperator 2003 (VDI-Bericht 1784, Berlin, 2003), Pp. 135141

  13. U. Pant, H. Meena, D.D. Shivagan, Mapan - J. Metrol. Soc. India 33, 201 (2018)

    Google Scholar 

  14. U. Pant, H. Meena, G. Gupta, K. Bapna, and D. D. Shivagan, in AIP Conf. Proc. 2115, (2019), p. 030029

  15. U. Pant, H. Meena, G. Gupta, D.D. Shivagan, Int. J. Thermophys. 40, 80 (2019)

    Article  ADS  Google Scholar 

  16. Y.G. Kim, K.S. Gam, I. Yang, Int. J. Thermophys. 31, 1498 (2010)

    Article  ADS  Google Scholar 

  17. C.J. Elliott, J.V. Pearce, G. Failleau, T. Deuzé, S. Briaudeau, M. Sadli, G. Machin, Metrologia 49, 88 (2012)

    Article  ADS  Google Scholar 

  18. G. Failleau, T. Deuzé, C. J. Elliott, J. V. Pearce, G. Machin, S. Briaudeau, and M. Sadli, in Jt. IMEKO TC11-TC19-TC20 Int. Symp. Metrol. Infrastructure, Environ. Energy Meas. Int. Symp. Energy Agencies Mediterr. Countries, IMEKO-MI (2011), pp. 77-80

  19. F. Edler, A.C. Baratto, Metrologia 43, 501 (2006)

    Article  ADS  Google Scholar 

  20. P. Bloembergen, Y. Yamada, N. Sasajima, Y. Wang, T. Wang, Metrologia 44, 279 (2007)

    Article  ADS  Google Scholar 

  21. M. Sadli, M. Matveyev, F. Bourson, V. Fuksov, Y.A. Sild, A.I. Pokhodun, Int. J. Thermophys. 32, 2657 (2011)

    Article  ADS  Google Scholar 

  22. A.D.W. Todd, M. Gotoh, D.J. Woods, K.D. Hill, Int. J. Thermophys. 32, 453 (2011)

    Article  ADS  Google Scholar 

  23. G. Failleau, T. Deuzé, D. Jouin, S. Mokdad, S. Briaudeau, M. Sadli, Int. J. Thermophys. 35, 1190 (2014)

    Article  ADS  Google Scholar 

  24. F. Edler, A.C. Baratto, Metrologia 42, 201 (2005)

    Article  ADS  Google Scholar 

  25. O. Ongrai, C.J. Elliott, Int. J. Thermophys. 38, 1 (2017)

    Article  Google Scholar 

  26. L. Wang, Int. J. Thermophys. 38, 1 (2017)

    Article  Google Scholar 

  27. F. Girard, M. Battuello, M. Florio, Int. J. Thermophys. 28, 2009 (2007)

    Article  ADS  Google Scholar 

  28. M. Holmsten, H. Ogura, P. Klason, S. Ljungblad, Int. J. Thermophys. 36, 1888 (2015)

    Article  ADS  Google Scholar 

  29. Z. Yuan, T. Wang, X. Lu, W. Dong, C. Bai, X. Hao, Y. Duan, Int. J. Thermophys. 32, 1744 (2011)

    Article  ADS  Google Scholar 

  30. T. Wang, C. Bai, W. Dong, Z. Yuan, P. Bloembergen, F. Liu, Int. J. Thermophys. 32, 1719 (2011)

    Article  ADS  Google Scholar 

  31. H. Ogura, M. Holmsten, P. Klason, Int. J. Thermophys. 36, 399 (2014)

    Article  ADS  Google Scholar 

  32. E. R. Woolliams, K. Anhalt, et al., Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. A374, 20150044 (2016)

  33. Y. Yamada, K. Anhalt, M. Battuello, P. Bloembergen, B. Khlevnoy, G. Machin, M. Matveyev, M. Sadli, A. Todd, T. Wang, Int. J. Thermophys. 36, 1834 (2015)

    Article  ADS  Google Scholar 

  34. B. Khlevnoy, I. Grigoryeva, K. Anhalt, M. Waehmer, E. Ivashin, D. Otryaskin, M. Solodilov, V. Sapritsky, Metrologia 55, S43 (2018)

    Article  ADS  Google Scholar 

  35. J. Fischer, M. Battuello, M. Sadli, M. Ballico, N. Park, P. Saunders, Y. Zundong, B. C. Johnson, E. Van, H. Nmi, W. Li, F. Sakuma, G. Machin, N. Fox, S. Ugur, and M. Matveyev, CCT-WG5 on radiation thermometry uncertainty budgets for realization of scales by radiation thermometry, CCT03-03, P 1–25. https://www.bipm.org/cc/CCT/Allowed/22/CCT03-03.pdf

  36. J.V. Nicholas, D.R. White, Meas. Sci. Technol. 13, 1651 (2002)

    Article  ADS  Google Scholar 

  37. D. Lowe, G. Machin, Metrologia 49, 189–199 (2012)

    Article  ADS  Google Scholar 

  38. M. Sadli, G. Machin, K. Anhalt, F. Bourson, S. Briaudeau, D. Del Campo, A. Diril, D. Lowe, G. Machin, J. M. Mantilla Amor, M.-J. Martin, H. McEvoy, M. Ojanen, Ö. Pehlivan, B. Rougié, and S. G. R. Salim, Phil. Trans. R. Soc. A374, 20150043 (2016)

  39. P. Coates and D. Lowe, The Fundamentals of Radiation Thermometers, CRC Press; 1 edition (2016)

  40. J. Fischer, G. Neuer, E. Schreiber, and R. Thomas, in Proc. TEMPMEKO 2001, 8th Int. Symp. Temp. Therm. Meas. Ind. Sci. (B. Fellmuth, J. Seidel, G. Sch. Eds.), 801806. VDI Verlag, Berlin, (2002)

  41. P. Saunders, Uncertainty arrising from the use of the mean effective wavelength in realizing ITS-90, in AIP Conference Proceedings 684, 639 (2003)

  42. Y.S. Yoo, B.H. Kim, C.W. Park, S.N. Park, Metrologia 47, 561 (2010)

    Article  ADS  Google Scholar 

  43. J. Fischer, Uncertainty Budgets for Realization of ITS-90 by Radiation Thermometry, in: AIP Conference Proceedings 684, 631 (2003). https://doi.org/10.1063/1.1627198

  44. Y.S. Yoo, G.J. Kim, S. Park, D.H. Lee, B.H. Kim, Metrologia 53, 1354 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Dr. D. K. Aswal, Director, CSIR-NPL and Dr. Sanjay Yadav, Head, Physico-Mechanical Metrology Division for their constant support in this project. The financial support received from the CSIR Project, “Measurement Innovations in Science and Technology (MIST-PSC-0111)” is acknowledged. We acknowledge Dr. Bhaskar Gahtori for his help on DSC measurements. Umesh Pant acknowledges the AcSIR Ph.D. Program and CSIR for the award of Senior Research Fellowship. We acknowledge our colleagues Yetendra and Mahesh Gandhi from Temperature and Humidity Metrology for the technical help during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Shivagan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pant, U., Meena, H., Gupta, G. et al. Development and Realization of Fe–C and Co–C Eutectic Fixed-Point Blackbodies for Radiation Thermometry at CSIR-NPL. Int J Thermophys 41, 101 (2020). https://doi.org/10.1007/s10765-020-02682-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02682-z

Keywords

Navigation