Skip to main content
Log in

Integrating finite-element-model and remote-sensing data into SWAT to estimate transit times of nitrate in groundwater

Intégration d’un modèle en éléments finis et de données de télédétection dans SWAT pour estimer les temps de transit des nitrates dans les eaux souterraines

Integración de datos de modelos de elementos finitos y de teledetección en el SWAT para estimar los tiempos de tránsito del nitrato en las aguas subterráneas

将有限元模型和遥感数据集成到SWAT中,以估算地下水中硝酸盐的运移时间

Integração do método dos elementos finitos e dados de sensoriamento remoto no SWAT para estimar os tempos de trânsito de nitrato nas águas subterrâneas

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

This study integrates a water-table estimator into the hydrologic model SWAT (Soil and Water Assessment Tool) to simulate transit times of nitrate in groundwater for Fish River basin in Alabama, USA. Three water-table estimators were developed using 3D finite-element-modeling data and spatiotemporally dynamic remotely sensed data. Initially, the study estimates spatiodynamic groundwater levels by coupling the spatial percolation from SWAT with a finite element model. The study then improved the spatial resolution of Gravity Recovery and Climate Experiment (GRACE) remote sensing data by the inverse distance weighted technique and generated the spatial groundwater levels. Next, empirical equations describing the relationship between the soil moisture and groundwater levels were obtained based on the SWAT-modeled groundwater levels and remotely sensed soil moisture contents. The results showed that the correlations of the groundwater levels between real stationed data and those obtained from the finite element method, GRACE approximations and the soil-moisture function were 0.691, 0.335 and 0.652 respectively. The spatiodynamic-groundwater-level estimates obtained from the best performing integrated model (SWAT and finite element model) were used to predict transit times of nitrate in groundwater with the aid of remotely sensed data. The result indicates that the transit time increases progressively from 1 year at 0.2-m depth of soil layer to 23 years at 0.80-m depth of soil layer in the Fish River basin. The transit times were positively related to the amount of spatially contributed nitrate in the groundwater that flows into river reaches in the basin.

Résumé

Cette étude intègre un estimateur du niveau de la nappe dans le modèle hydrologique SWAT (Soil and Water Assessment Tool) afin de simuler les temps de transit des nitrates dans les eaux souterraines du bassin de la Fish River, Alabama, USA. Trois estimateurs du niveau de nappe ont été développés en utilisant des données de modélisation 3D par éléments finis et des données spatio-temporelles de télédétection dynamiques. Initialement, l’étude estime la dynamique spatiale des niveaux d’eau souterraine en couplant l’infiltration spatialement distribuée issue de SWAT avec un modèle en éléments finis. L’étude a ensuite amélioré la résolution spatiale des données satellitaires GRACE (Gravity Recovery and Climate Experiment) par une technique de pondération inverse à la distance et a généré des niveaux d’eau souterraine spatialisés. Ensuite, des équations empiriques décrivant la relation entre l’humidité du sol et les niveaux d’eau souterraine ont été obtenus sur la base des niveaux d’eau simulés avec SWAT et les taux d’humidité obtenus par télédétection. Les résultats montrent que les corrélations des niveaux d’eau souterraine mesurés au niveau de piézomètres et celles obtenues avec la méthode par éléments finis, les approximations GRACE et la fonction humidité du sol sont de 0.691, 0.335 et 0.652 respectivement. Les estimations spatiotemporelles des niveaux d’eau souterraine obtenues avec le modèle intégré offrant la meilleure performance (SWAT et éléments finis) ont été utilisées pour prédire les temps de transit des nitrates dans les eaux souterraines avec l’aide de données de télédétection. Le résultat indique que le temps de transit augmente progressivement d’un an à 0.2 m de profondeur dans la couche de sol, à 23 ans à 0.8 m de profondeur dans la couche de sol dans le bassin de Fish River. Les temps de transit sont corrélés positivement avec la somme des contributions spatiales en nitrates dans les eaux souterraines qui alimentent les tronçons de la rivière dans le bassin.

Resumen

Este estudio integra un estimador de la capa freática en el modelo hidrológico SWAT (Soil and Water Assessment Tool) para simular los tiempos de tránsito del nitrato en las aguas subterráneas para la cuenca del río Fish en Alabama, Estados Unidos. Se desarrollaron tres estimadores de la capa freática utilizando datos de modelización de elementos finitos en 3D y datos dinámicos espacio-temporales de teledetección. Inicialmente, el estudio estima los niveles de las aguas subterráneas espacialmente dinámicas acoplando la infiltración espacial obtenida mediante el SWAT con un modelo de elementos finitos. A continuación, el estudio mejoró la resolución espacial de los datos de teleobservación del Gravity Recovery and Climate Experiment (GRACE) mediante la técnica de ponderación inversa de la distancia y generó los niveles espaciales de las aguas subterráneas. A continuación, se obtuvieron ecuaciones empíricas que describían la relación entre la humedad del suelo y los niveles de las aguas subterráneas sobre la base de los niveles de aguas subterráneas modelados por el SWAT y los contenidos de humedad del suelo detectados por teleobservación. Los resultados mostraron que las correlaciones de los niveles entre los datos estacionarios reales y los obtenidos por el método de los elementos finitos, las aproximaciones GRACE y la función de la humedad del suelo eran 0.691, 0.335 y 0.652 respectivamente. Se utilizaron las estimaciones espaciales y dinámicas del nivel de las aguas subterráneas obtenidas con el modelo integrado de mejor rendimiento (SWAT y modelo de elementos finitos) para predecir los tiempos de tránsito del nitrato en las aguas subterráneas con la ayuda de datos obtenidos por teledetección. El resultado indica que el tiempo de tránsito aumenta progresivamente de un año a 0.2 m de profundidad de la capa de suelo a 23 años a 0.80 m de profundidad de la capa de suelo en la cuenca del río Fish. Los tiempos de tránsito se relacionaron positivamente con la cantidad de nitrato aportado espacialmente en las aguas subterráneas que fluyen hacia los valles de los ríos en la cuenca.

摘要

这项研究将水位估算方法集成到水文模型SWAT(土壤和水评估工具)中,以模拟美国阿拉巴马州Fish河流域地下水中硝酸盐的运移时间。使用三维有限元建模数据和时空动态遥感数据开发了三种地下水位估算方法。刚开始,该研究通过将SWAT的空间渗流与有限元模型耦合来估算时空变化的地下水位。然后,研究通过反距离加权技术提高了重力恢复和气候实验(GRACE)遥感数据的空间分辨率,并生成了空间分布的地下水位。接下来,基于SWAT模型的地下水位和遥感的土壤水分含量,获得了描述土壤湿度与地下水位之间关系的经验方程。结果表明,实际测站数据与有限元法,GRACE近似法和土壤水分函数获得的地下水位之间的相关性分别为0.691、0.335和0.652。从最佳综合模型(SWAT和有限元模型)获得的时空地下水位估算值可用于借助遥感数据预测地下水中硝酸盐的运移时间。结果表明,Fish河流域运移时间从土层深度0.2 m处的一年逐渐增加到土层深度0.80 m处的23年。运移时间与流入流域河流段面的地下水中空间分布贡献的硝酸盐量成正相关。

Resumo

Este estudo integra um estimador de lençol freático ao modelo hidrológico SWAT (Ferramenta de Avaliação de Solo e Água) para simular tempos de trânsito de nitrato nas águas subterrâneas da bacia do Rio Fish no Alabama, EUA. Três estimadores de lençol freático foram desenvolvidos usando dados de modelagem de elementos finitos 3D e dinâmica espacial e temporal via sensoriamento remoto. Inicialmente, o estudo estima os níveis dinâmicos espaciais das águas subterrâneas acoplando a percolação espacial do SWAT com o método de elementos finitos. O estudo melhorou a resolução espacial dos dados do Gravity Recovery and Climate Experiment (GRACE) pela técnica de distância inversa ponderada e gerou os níveis espaciais das águas subterrâneas. Em seguida, as equações empíricas que descrevem a relação entre a umidade do solo e os níveis de água subterrânea foram obtidas com base nos níveis de água subterrânea modelados no SWAT e no conteúdo de umidade do solo detectado remotamente. Os resultados mostraram que as correlações dos níveis de água subterrânea entre os dados reais pontuais e os obtidos pelo método dos elementos finitos, aproximações do GRACE e a função da umidade do solo foram de 0.691, 0.333 e 0.52, respectivamente. As estimativas dinâmicas espaciais do nível da água subterrânea obtidas a partir do modelo integrado de melhor desempenho (SWAT e método dos elementos finitos) foram usadas para prever os tempos de trânsito de nitrato nas águas subterrâneas com o auxílio de dados detectados remotamente. O resultado indica que o tempo de trânsito aumenta progressivamente de um ano a 0.2 m de profundidade da camada do solo para 23 anos a 0.80 m de profundidade na bacia do Rio Fish. Os tempos de trânsito foram positivamente relacionados à quantidade de nitrato espacialmente contribuído nas águas subterrâneas que flui para os alcances do rio na bacia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akhavan M, Imhoff PT, Andres AS, Finsterle S (2013) Model evaluation of denitrification under rapid infiltration basin systems. J Contam Hydrol 152:18–34

    Google Scholar 

  • Alabama Department of Environmental Management (2006) Final nutrient total maximum daily loads (TMDLs) for the Cahaba River catchment. Water Div. ADEM, Montgomery, AL

    Google Scholar 

  • Alexander RB, Smith RA (1990) County-level estimates of nitrogen and phosphorus fertilizer use in the United States, 1945 to 1985. US Geol Surv Open File Rep 12:90–130

    Google Scholar 

  • Alikhani J, Deinhart AL, Visser A, Bibby RK, Purtschert R, Moran JE (2016) Nitrate vulnerability projections from Bayesian inference of multiple groundwater age tracers. J Hydrol 543:167–181

    Google Scholar 

  • Anderson S (2001) An evaluation of spatial interpolation methods on air temperature in phoenix. Arizona State University, Tempe, AZ

  • Anderson WP Jr (2002) Aquifer salinization from storm overwash. J Coast Res 18:413–420

    Google Scholar 

  • Aravena R, Robertson WD (1998) Use of multiple isotope tracers to evaluate denitrification in ground water: study of nitrate from a large-flux septic system plume. Ground Water 36(6):975–982

    Google Scholar 

  • Arnold G, Kiniry R, Srinivasan R, Williams R, Haney B, Neitsch L (2012) Soil and water assessment tool: input/output documentation. TR-439, Texas Water Resources Institute, College Station, TX

  • Arnold TR (2013) Procedural knowledge for integrated modeling: towards the modeling playground. Environ Model Softw 39:135e148

    Google Scholar 

  • Asadi SS, Vuppala P, Anji Reddy M (2007) Remote sensing and GIS techniques for evaluation of groundwater quality in municipal corporation of Hyderabad (zone-V), India. Int J Environ Res Public Health 4(1):45–52

    Google Scholar 

  • Baker MA, Vervier P (2004) Hydrological variability, organic matter supply and denitrification in the Garonne River ecosystem. Freshw Biol 49(2):181–190

    Google Scholar 

  • Barlow P, Reichard E (2010) Saltwater intrusion in coastal regions of North America. Hydrogeol J 18:247–260

    Google Scholar 

  • Beeson S, Cook MC (2004) Nitrate in groundwater: a water company perspective. Q J Eng Geol Hydrogeol 37(4):261–270

    Google Scholar 

  • Bolke JK, Denver JM (1995) Combined use of ground water dating, chemical, and isotopic analysis to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resour Res 31(9):2319–2339

    Google Scholar 

  • Bolke JK, Wanty R, Tuttle M, Delin G, Landon M (2002) Denitrification in the recharge area and discharge area of a transient agricultural nitrate plume in a glacial outwash sand aquifer, Minnesota. Water Resour Res 38(7):10.1–10.26

    Google Scholar 

  • Borrelli P, Diodato N, Panagos P (2016) Rainfall erosivity in Italy: a national scale spatio-temporal assessment. Int J Digital Earth 9:835–850. https://doi.org/10.1080/17538947.2016.1148203

    Article  Google Scholar 

  • Botter G, Bertuzzo E, Rinaldo A (2011) Catchment residence and travel time distributions: the master equation. Geophys Res Lett 38:L11403

    Google Scholar 

  • Busenberg E, Plummer LN (1992) Use of chlorofluorocarbons (CCl3F and CCl2F2) as hydrologic tracers and age-dating tools: the alluvium and terrace system of central Oklahoma. Water Resour Res 28:2257–2283

    Google Scholar 

  • Castle SL, Thomas BF, Reager JT, Rodell M, Swenson SC, Famiglietti JS (2014) Groundwater depletion during drought threatens future water security of the Colorado River basin. Geophys Res Lett 41:5904–5911

    Google Scholar 

  • Chen JL, Rodell M, Wilson CR, Famiglietti JS (2005) Low degree spherical harmonic influences on gravity recovery and climate experiment (GRACE) water storage estimates. Geophys Res Lett 32:L14405. https://doi.org/10.1029/2005GL022964

    Article  Google Scholar 

  • Chen J, Yiping W (2012) Advancing representation of hydrologic processes in the soil and water assessment tool (SWAT) through integration of the TOPographic MODEL (TOPMODEL) features. J Hydrol 420–421:319–328

    Google Scholar 

  • Chung C, Salas JD (2000) Drought occurrence probabilities and risks of dependent hydrologic processes. J Hydrol Eng

  • Cook MR (2016) Pre-restoration analysis of discharge, sediment transport rates, water quality, and land-use impacts in the Fish River Catchment, Baldwin County, Alabama. Geological Survey of Alabama, Tuscaloosa, AL, pp 1–53

  • Dechmi F, Burguete J, Skhiri A (2012) SWAT application in intensive irrigation systems: model modification, calibration and validation. J Hydrol 470–471:227–238. https://doi.org/10.1016/j.jhydrol.2012.08.055

    Article  Google Scholar 

  • Deepanjan M, Navindu G (2000) Nitrate pollution of groundwater and associated human health disorders. Indian J. Environ Health 42(1):28–39

  • Dogrul EC, Schmid W, Hanson RT, Kadir T, Chung F (2011) Integrated water flow model and MODFLOW-farm process: a comparison of theory, approaches, and features of two integrated hydrologic models. California National Resources Agency, Sacramento, CA

    Google Scholar 

  • Doll P (2009) Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ Res Lett 4:035006

    Google Scholar 

  • Dowling CB, Poreda RJ, Hunt AG, Carey AE (2004) Groundwater discharge and nitrate flux to the Gulf of Mexico determined by 3He/3H and 4He age dating. Ground Water 42:401–417

  • Falkenmark M (1989) Water scarcity now threatening Africa: why isn’t it being addressed? Ambio J Hum Environ 18(2):112–118

    Google Scholar 

  • Famiglietti JS (2014) The global groundwater crisis. Nat Clim Chang 4(11):945–948. https://doi.org/10.1038/nclimate2425

    Article  Google Scholar 

  • Famiglietti JS, Lo M, Ho SL, Bethune J, Anderson KJ, Syed TH, Swenson SC, deLinage CR, Rodell M (2011) Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys Res Lett 38:L03403. https://doi.org/10.1029/2010GL046442

    Article  Google Scholar 

  • Ferro V, Giordano G, Iovino M (2009) Isoerosivity and erosion risk map for Sicily. Hydrol Sci J 36:549–564. https://doi.org/10.1080/02626669109492543

    Article  Google Scholar 

  • FitzGerald DM, Fenster MS, Argow BA, Buynevich IV (2008) Coastal impacts due to sea-level rise. Annu Rev Earth Planet Sci 36:601–647

    Google Scholar 

  • Freeze RA, Harlan R (1969) Blueprint for a physically-based, digitally-simulated hydrologic response model. J Hydrol 9(3):237–258

    Google Scholar 

  • Gal CL, Salle L, Aquilina L, Fourre E, Jean-baptiste P, Michelot J, Roux C, Bugai D, Labasque T (2012) Groundwater residence time downgradient of trench no. 22 at the Chernobyl pilot site: constraints on hydrogeological aquifer functioning. Appl Geochem 27(7):1304–1319 https://doi.org/10.1016/j.apgeochem.2011.12.006

    Google Scholar 

  • Glynn PD, Plummer LN (2005) Geochemistry and the understanding of groundwater systems. Hydrogeol J 13:263–287

    Google Scholar 

  • Gooddy DC, Darling WG, Abesser C, Lapworth DJ (2006) Using chlorofluorocarbons (CFCs) and Sulphur hexafluoride (SF6) to characterise groundwater movement and residence time in a lowland chalk catchment. J Hydrol 330:44–52 https://doi.org/10.1016/j.jhydrol.2006.04.011

    Google Scholar 

  • Gourcy L, Baran N, Vittecoq B (2009) Improving the knowledge of pesticide and nitrate transfer processes using age-dating tools (CFC, SF6, 3H) in a volcanic island (Martinique French West Indies). J Contam Hydrol 108(3):107–117

    Google Scholar 

  • Guo GM, Zhao RB (2004) Monitoring soil moisture content with MODIS data. Soils 36:219221

    Google Scholar 

  • Gyananath G, Islam SR, Shewdikar SV (2001) Assessment of environmental parameter on ground water quality. Indian J Environ Protect 21:289–294

    Google Scholar 

  • Harmsen GW, Van Schreven DA (1955) Mineralization of organic nitrogen in soil. Adv Agron 7:299–398

    Google Scholar 

  • Huang J, Zhang J, Zhang Z, Xu CY (2013) Spatial and temporal variations in rainfall erosivity during 1960–2005 in the Yangtze River basin. Stoch Env Res Risk A 27:337–351

    Google Scholar 

  • Huo A, Dang J, Song J, Chen XH, Mao H (2016) Simulation modeling for water governance in basins based on surface water and groundwater. Agric Water Manage 174:22–29

    Google Scholar 

  • Johnston CT, Cook PG, Frape SK, Plummer LN, Busenberg E, Blackport RJ (1998) Ground water age and nitrate distribution within a glacial aquifer beneath a thick unsaturated zone. Ground Water 36:171–180

    Google Scholar 

  • Jonathan RS (1967) Triangle: a two-dimensional quality mesh generator and Delaunay triangulator. https://www.cs.cmu.edu/~quake/triangle.html. Accessed May 2020

  • Jonathan RS (2001) Delaunay refinement algorithms for Triangulator mesh generation. https://people.eecs.berkeley.edu/~jrs/papers/2dj.pdf. Accessed May 2020

  • Joseph J, Preetha PP, Narasimhan B (2013) Estimation of in stream flow requirements of Son River in Ganga Basin. Proceedings of HYDRO 2013 International, IIT Madras, India, December 2013

  • Kim NW, Moon Chung II, Won YS, Arnold JG (2008) Development and application of the integrated SWAT-MODFLOW model. J Hydrol 356(1–2):1–16

    Google Scholar 

  • Komarov S (1993) Remote determination of groundwater levels using regional data bases. Issledovanie Zemli iz Kosmosa 4:7982

    Google Scholar 

  • Komarov SA, Mironov VL, Romanov AN, Yevtyushkin AV (1999) Remote sensing of the water table: measurement and a data processing algorithm. Mapping Sci Remote Sens 36:110

    Google Scholar 

  • Krishna NDR, Maji AK, Krishna YVN, Rao BPS (2001) Remote sensing and geographical information system for canopy cover mapping. J Indian Soc Remote 29(3):108–113

    Google Scholar 

  • Lanari R, Lundgren P, Manzo M, Casu F (2004) Satellite radar interferometry time series analysis of surface deformation for Los Angeles, California. Geophys Res Lett 31:L23613. https://doi.org/10.1029/2004GL021294

    Article  Google Scholar 

  • Laniak GF, Olchin G, Goodall J, Voinov A, Hill M, Glynn P, Whelan G, Geller G, Quinn N, Blind M, Peckham S, Reaney S, Gaber N, Kennedy R, Hughes A (2013) Integrated environmental modeling: a vision and roadmap for future. Environ Model Softw 39:3e23

    Google Scholar 

  • Li Q, Unger A, Sudicky E, Kassenaar D, Wexler E, Shikaze S (2008) Simulating the multi-seasonal response of a large-scale watershed with a 3D physically-based hydrologic model. J Hydrol 357(3):317–336

    Google Scholar 

  • Li Z, Quan J, Li X, Wu X, Wu H, Li Y, Li G (2016) Establishing a model of conjunctive regulation of surface water and groundwater in the arid regions. Agr Water Manage 174:30–38

    Google Scholar 

  • Ma X, Xu J, Luo Y, Aggarwal S, Li J (2009) Response of hydrological processes to land cover and climate changes in Kejie watershed, South-West China. Hydrol Process 23:1179–1191

    Google Scholar 

  • Maloszewski P, Zuber A (1996) Lumped parameter models for the interpretation of environmental tracer data. IAEA-TECDOC-910 International Atomic Energy Agency, Vienna, pp 9–58

  • McGuire KJ, McDonnell JJ (2006) A review and evaluation of catchment transit time modeling. J Hydrol 330:543–563. https://doi.org/10.1026/j.hydrol.2006.04.020

    Article  Google Scholar 

  • Milly PCD, Dunne KA, Vecchia AV (2005) Global pattern of trends in streamflow and water availability in a changing climate. Nature 438:347–350

    Google Scholar 

  • Modica E, Reilly TE, Pollock DW (1997) Patterns and age distribution of ground-water flow to streams. Ground Water 5(3):523–537

    Google Scholar 

  • Mohanty BP, Skaggs TH (2001) Spatio-temporal evolution and time-stable characteristics of soil moisture within remote sensing footprints with varying soil, slope, and vegetation. Adv Water Resour 24:10511067

    Google Scholar 

  • Momoshima N, Inoue F, Ohta T, Mahara Y, Shimada J, Ikawa R, Kagabu M, Ono M, Yamaguchi K, Sugihara S, Taniguchi M (2011) Application of 85Kr dating to groundwater in volcanic aquifer of Kumamoto area, Japan. J Nucl Chem 287:761–767 https://doi.org/10.1007/s10967-010-0821-0

    Google Scholar 

  • Momoshima N, Inoue F, Sugihara S, Shimada J, Taniguchi M (2010) An improved method for 85Kr analysis by liquid scintillation counting and its application to atmospheric 85Kr determination. J Environ Radioact 101:615–621

    Google Scholar 

  • Narasimhan B, Sri Ranjan R (2000) Electrokinetic barrier to prevent subsurface contaminant migration: theoretical model development and validation. J Contam Hydrol 42:1–17

    Google Scholar 

  • Nas B, Berktay A (2010) Groundwater quality mapping in urban groundwater using GIS. Environ Monitor Assess 160(1–4):215–227

    Google Scholar 

  • Nir A (1964) On the interpretation of tritium age measurements in groundwater. J Geophys Res 69:2589–2595

    Google Scholar 

  • Niu GY, Yang ZL (2006a) Assessing a land surface model’s improvements with GRACE estimates. Geophys Res Lett 33:L07401. https://doi.org/10.1029/2005GL025555

    Article  Google Scholar 

  • Niu GY, Yang ZL (2006b) Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J Hydrometeorol 7(5):937–952

    Google Scholar 

  • Ocampo CJ, Oldham CE, Sivapalan M (2006) Nitrate attenuation in agricultural catchments: sifting balances between transport and reaction. Water Resour Res 42:W01408 https://doi.org/10.1029/2004WR003773

    Google Scholar 

  • Panagos P, Ballabio C, Borrelli P (2015) Rainfall erosivity in Europe. Sci Total Environ 2015(511):801–814. https://doi.org/10.1016/j.scitotenv.2015.01.008

    Article  Google Scholar 

  • Pikul MF, Street RL, Remson I (1974) A numerical model based on coupled one-dimensional Richards and Boussinesq equations. Water Resour Res 10(2):295–302

    Google Scholar 

  • Pisinaras V, Petalas C, Gikas GD, Gemitzi A, Tsihrintzis VA (2010) Hydrological and water quality modeling in a medium sized basin using the soil and water assessment tool (SWAT). Desalination 250(1):274–286

    Google Scholar 

  • Plummer LN, Michel EM, Thurman EM, Glynn PD (1993) Environmental tracers for age-dating young groundwater, in regional ground-water quality. Van Nostrand Reinhold, New York, pp 255–294

  • Post VEA (2005) Fresh and saline groundwater interaction in coastal aquifers: is our technology ready for the problems ahead? Hydrogeol J 13:120–123

    Google Scholar 

  • Preetha PP, Al-Hamdan AZ (2018) Multi-level pedotransfer modification functions of the USLE-K factor for annual soil erodibility estimation of mixed landscapes. Model Earth Syst Environ 5(3):767–779. https://doi.org/10.1007/s40808-018-0563-5

    Article  Google Scholar 

  • Preetha PP, Al-Hamdan AZ (2020) Developing nitrate-nitrogen transport models using remotely-sensed geospatial data of soil moisture profiles and wet depositions. J Environ Sci Health 55(5):615–628

  • Preetha PP, Joseph J, Narasimhan B (2013) Assessment of climate change impacts on the surface water and ground water potentials of Chennai River basin. Proceedings of HYDRO 2013 International, IIT Madras, India, December 2013

  • Preetha PP, Al-Hamdan AZ, Anderson MD (2019) Assessment of climate variability and short-term land use land cover change effects on water quality of Cahaba River basin. PhD Thesis, Tuskegee University, Tuskegee, AL

  • Rangzan K, Charchi A, Abshirini E, Dinger J (2008) Remote sensing and GIS approach for water-well site selection, Southwest Iran. Environ Eng Geosci 14(4):315–326

    Google Scholar 

  • Richey AS, Thomas BF, Lo MH, Reager JT, Famiglietti JS, Voss K, Swenson S, Rodell M (2015) Quantifying renewable groundwater stress with GRACE. Water Resour Res 51:5217–5238. https://doi.org/10.1002/2015WR017349

    Article  Google Scholar 

  • Risal A (2016) Application of web ERosivity module (WERM) for estimation of annual and monthly R factor in Korea. Catena 147:225–237. https://doi.org/10.1016/j.catena.2016.07.017

    Article  Google Scholar 

  • Robinson JL, Moreland RS, Clark AE (1996) Ground-water resources data for Baldwin County, Alabama. US Geol Surv Open-File Rep 6496-487

  • Rodell M, Famiglietti JS (2001) An analysis of terrestrial water storage variations in Illinois with implications for the gravity recovery and climate experiment (GRACE). Water Resour Res 37(5):1327–1339

    Google Scholar 

  • Rodell M, Famiglietti JS (2002) The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, central US. J Hydrol 263(1–4):245–256. https://doi.org/10.1016/S0022-1694(02)00060-4

    Article  Google Scholar 

  • Sadeghi SH, Zabihi M, Vafakhah M, Hazbavi Z (2017) Spatiotemporal mapping of rainfall erosivity index for different return periods in Iran. Nat Hazards 87:35–56. https://doi.org/10.1007/s11069-017-2752-3

    Article  Google Scholar 

  • Schlosser P, Stute M, Sonntag C, Münnich K (1989) Tritiogenic 3He in shallow groundwater. EPSL. 94(3–4):245–256

    Google Scholar 

  • Schmidt CM, Fisher AT, Racz AJ, Lockwood BS, Huertos ML (2011) Linking denitrification and infiltration rates during managed artificial recharge. Environ Sci Technol 45(22):9634–9640

    Google Scholar 

  • Schmidt S, Alewell C, Panagos P, Meusburger K (2016) Regionalization of monthly rainfall erosivity patterns in Switzerland. Hydrol Earth Syst Sci 20:4359–4373. https://doi.org/10.5194/hess-20-4359-2016

    Article  Google Scholar 

  • Seo KW, Wilson CR (2005) Simulated estimation of hydrological loads from GRACE. J Geod 78:442–456

    Google Scholar 

  • Setianto A, Triandini T (2013) Comparison of kriging and inverse distance weighted (IDW) interpolation methods in lineament extraction and analysis. J Appl Geol 5(1):21–29

    Google Scholar 

  • Shi YC, Guo J, Bi ZW (2007) The use of TM images to determine depth of shallow diving area. Hebei Remote Sens 1:1516–1518

    Google Scholar 

  • Singh RD, Kumar CP (2010) Impact of climate change on groundwater resources. Int J Eng Sci 1(5)

  • Sipkay L, Horvath J, Nosek ON, Vadadi F, Farkas E, Dregelyi KA, Hufnagel L (2008) Analysis of climate change scenarios based on modeling of the seasonal dynamics of a Danubian copepod species. Appl Ecol Env Res 6(4):101–109

    Google Scholar 

  • Skidmore AK, Bijer W, Schmidt K, Lalit KK (1997) Use of remote sensing and GIS for sustainable land management. ITC J 3(4):302–315

    Google Scholar 

  • Small C, Nicholls RJ (2003) A global analysis of human settlement in coastal zones. J Coast Res 19:584–599

    Google Scholar 

  • Solomon DK, Hunt A, Poreda RJ (1996) Source of radiogenic helium 4 in shallow aquifer: implications for dating young groundwater. Water Resour Res 32:1805–1814

    Google Scholar 

  • Sridhar V, Billah MM, Hildreth JW (2017) Coupled surface and groundwater hydrological modeling in a changing climate. Groundwater 56:618–635

    Google Scholar 

  • Strong DT, Sale PWG, Helyar KR (1999) The influence of soil matrix on nitrogen mineralisation and nitrification. IV. Texture. Aust J Soil Res 37:329–344

    Google Scholar 

  • Sterte EJ, Johansson E, Sjöberg Y, Karlsen RH, Laudon H (2018) Groundwater-surface water interactions across scales in a boreal landscape investigated using a numerical modelling approach. J. Hydrol 560:184–201

  • Stuart ME, Maurice L, Heaton THE, Sapiano M, Sultana MM, Gooddy DC, Chilton PJ (2010) Applied geochemistry groundwater residence time and movement in the Maltese islands: a geochemical approach. Appl Geochem 25(5):609–620 https://doi.org/10.1016/j.apgeochem.2009.12.010

    Google Scholar 

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the earth system. Science 305(5683):503–505. https://doi.org/10.1126/science.1099192

    Article  Google Scholar 

  • Thomas AC, Reager JT, Famiglietti JS, Rodell MA (2014) GRACE-based water storage deficit approach for hydrological drought characterization. Geophys Res Lett 41:1537–1545

    Google Scholar 

  • USGS (2019) LP DAAC. MODIS/Terra+aqua land cover type yearly L3 global 500m SIN grid V006. USGS, Reston, VA. https://search.earthdata.nasa.gov/search/granules?tag_key=gov.nasa.eosdis&p=C186286578. Accessed May 2020

  • Valerio AM (2008) Modelling groundwater-surface water interactions in an operational setting by linking RIVERWARE with MODFLOW. PhD Thesis, University of Colorado, Fort Collins, CO

  • Varni M, Carrera J (1998) Simulation of groundwater age distributions. Water Resour Res 34(12):3271–3281

    Google Scholar 

  • Vorapracha PP, Phonprasert S, Khanaruksombat PN (2015) A comparison of spatial interpolation methods for predicting concentrations of particle pollution (PM10). Int J Chem Environ Biol Sci 3(4):302–306

    Google Scholar 

  • Vorosmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289:284–288

    Google Scholar 

  • Xiao R, He X, Zhang Y, Ferreira V, Chang L (2015) Monitoring groundwater variations from satellite gravimetry and hydrological models: a comparison with in-situ measurements in the mid-Atlantic region of the United States. Remote Sens 7:686–703

    Google Scholar 

  • Yesuf H, Assen M, Alamirew T, Melesse A (2015) Modeling of sediment yield in Maybar gauged watershed using SWAT, northeast Ethiopia. Catena 127:191–205

  • Yeung AT (1990) Electro-kinetic barrier to contaminant transport through compacted clay. PhD Thesis, University of California, Berkeley, CA, 260 pp

  • Yu M, Rui XF (2007) Study on integrated management model of groundwater and surface water for prevention of soil salinization. J Water Resource Prot 23(4):6–9

    Google Scholar 

  • Zhang C, Liu Y, Qia H (2015) An empirical study on the spatial distribution of the population, economy and water resources in Northeast China. Phys Chem Earth Parts A/B/C 79–82:93–99

    Google Scholar 

  • Zhang X, Srinivasan R, Hao F (2007) Predicting hydrologic response to climate change in the Luohe River Basin using the SWAT model. Trans ASABE 50(3):901–910

Download references

Acknowledgements

We are grateful to the reviewers and editors for their valuable comments and suggestions, which enhanced this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja P. Preetha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preetha, P.P., Al-Hamdan, A.Z. Integrating finite-element-model and remote-sensing data into SWAT to estimate transit times of nitrate in groundwater. Hydrogeol J 28, 2187–2205 (2020). https://doi.org/10.1007/s10040-020-02171-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02171-5

Keywords

Navigation