Skip to main content
Log in

Exposure to domoic acid causes oxidative stress in bay scallops Argopecten irradians

  • Original Article
  • Food Science and Technology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

The neurotoxin domoic acid (DA) is produced by Pseudo-nitzschia spp. during harmful algal blooms and is linked to amnesic shellfish poisoning. This toxin is particularly problematic in the culture of bivalves for human consumption. In this study, we exposed bay scallops to 20, 40, and 60 ng/ml DA and examined toxin accumulation and stress response at 3, 6, 12, 24, 36, and 48 h of exposure. Oxidative stress was determined by measuring the levels of superoxide dismutase (SOD), catalase (CAT), heat shock protein 90 (HSP90), and metallothionein (MT) in the digestive diverticula and/or hemolymph and by determining H2O2 concentration in hemolymph. We also observed histological changes to gills following exposure to DA in order to determine changes in melanization. We found that scallops accumulated a maximum of 2.61 ng/ml DA in their digestive diverticula when exposed to 60 ng/ml. Stress indices rose under higher DA concentrations, and HSP levels increased under exposure to higher concentrations of DA. However, mRNA expression and activity of other stress parameters showed peaks at different times during exposure, with subsequent declines. Epithelial melanization of gills indicated a strong positive response to DA at 60 ng/ml for 48 h (P < 0.05). These results indicate that exposure to DA induces oxidative stress, disrupts metabolism, and has negative effects on the defense systems of bay scallops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson D (2014) HABs in a changing world: a perspective on harmful algal blooms, their impacts, and research and management in a dynamic era of climatic and environmental change. In: Kim HG, Reguera B, Hallegraeff GM, Lee CK, Han MS, Choi JK (eds) Harmful Algae 2012, Proc 15th International Conference on Harmful Algae. International Society for the Study of Harmful Algae, Busan, pp 3–17

  • Barber BJ, Davis CV (1997) Growth and mortality of cultured bay scallops in the Damariscotta River, Maine (USA). Aquacult Int 5:451–460

    Article  Google Scholar 

  • Bates SS, Bird CJ, de Freitas ASW, Foxall R, Gilgan M, Hanic LA, Johnson GR, McCulloch AW, Odense P, Pocklington R, Quilliam MA, Sim PG, Smith JC, Subba Rao DV, Todd ECD, Walter JA, Wright JLC (1989) Pennate diatom Nitzschia pungens as the primary source of domoic acid, a toxin in shellfish from eastern Prince Edward Island, Canada. Can J Fish Aquat Sci 46:1203–1215

    Article  CAS  Google Scholar 

  • Bauder AG, Cembella AD, Bricelj VM, Quilliam MA (2001) Uptake and fate of diarrhetic shellfish poisoning toxins from the dinoflagellate Prorocentrum lima in the bay scallop Argopecten irradians. Mar Ecol Prog Ser 213:39–52

    Article  CAS  Google Scholar 

  • Brown HM, Briden A, Stokell T, Griffin FJ, Cherr GN (2004) Thermotolerance and HSP70 profiles in adult and embryonic California native oysters, Ostreola conchaphila (Carpenter, 1857). J Shellfish Res 23:135–141

    Google Scholar 

  • Chen J, Mai K, Ma H, Wang X, Deng D, Liu X, Xu W, Liufu Z, Tan B (2007) Effects of dissolved oxygen on survival and immune responses of scallop (Chlamys farreri Jones et Preston). Fish Shellfish Immunol 22:272–281

    Article  Google Scholar 

  • Chi C, Jiang B, Yu XB, Liu TQ, Xia L, Wang GX (2014) Effects of three strains of intestinal autochthonous bacteria and their extracellular products on the immune response and disease resistance of common carp, Cyprinus carpio. Fish Shellfish Immunol 36:9–18

    Article  CAS  Google Scholar 

  • Chi C, Giri S, Jun J, Kim H, Yun S, Kim S, Park S (2016) Marine toxin okadaic acid affects the immune function of bay scallop (Argopecten irradians). Molecules 21:1108

    Article  Google Scholar 

  • Cranford PJ (2006) Scallops and marine contaminants. In: Shumway SE, Parsons GJ (eds) Scallops: biology, ecology and aquaculture. Elsevier, Amsterdam, pp 745–764

    Chapter  Google Scholar 

  • Douglas DJ, Kenchington ER, Bird CJ, Pocklington R, Bradford B, Silvert W (1997) Accumulation of domoic acid by the sea scallop (Placopecten magellanicus) fed cultured cells of toxic Pseudo-nitzschia multiseries. Can J Fish Aquat Sci 54:907–913

    Article  CAS  Google Scholar 

  • Escobedo-Lozano AY, Estrada N, Ascencio F, Contreras G, Alonso-Rodriguez R (2012) Accumulation, biotransformation, histopathology and paralysis in the Pacific Calico Scallop Argopecten ventricosus by the paralyzing toxins of the Dinoflagellate Gymnodinium catenatum. Mar Drugs 10:1044–1065

    Article  CAS  Google Scholar 

  • Estrada N, Romero MJ, Campa-Córdova A, Luna A, Ascencio A (2007) Effects of the toxic dinoflagellate, Gymnodinium catenatum on hydrolytic and antioxidant enzymes, in tissues of the giant lions-paw scallop Nodipecten subnodosus. Comput Biochem Physiol C 146:502–510

    Google Scholar 

  • Frantzen M, Regoli F, Ambrose WG, Nahrgang J, Geraudie P, Benedetti M, Locke VWL, Camus L (2016) Biological effects of mechanically and chemically dispersed oil on the Icelandic scallop (Chlamys islandica). Ecotoxicol Environ Saf 127:95–107

    Article  CAS  Google Scholar 

  • Gao Q, Zhao J, Song L, Qiu L, Yu Y, Zhang H, Ni D (2008) Molecular cloning, characterization and expression of heat shock protein 90 gene in the haemocytes of bay scallop Argopecten irradians. Fish Shellfish Immunol 24:379–385

    Article  CAS  Google Scholar 

  • Hallegraeff GM (2010) Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. J Phycol 46:220–235

    Article  CAS  Google Scholar 

  • Hannam ML, Bamber SD, Moody JA, Galloway TS, Jones MB (2009) Immune function in the Arctic Scallop, Chlamys islandica, following dispersed oil exposure. Aquat Toxicol 92:187–194

    Article  CAS  Google Scholar 

  • Hégaret H, Wikfors GH (2005) Time-dependent changes in hemocytes of eastern oysters, Crassostrea virginica, and northern bay scallops, Argopecten irradians irradians, exposed to a cultured strain of Prorocentrum minimum. Harmful Algae 4:187–199

    Article  Google Scholar 

  • Hoagland P, Scatasta S (2006) The economic effects of harmful algal blooms. Ecology of harmful algae. Springer, Berlin, pp 391–402

    Chapter  Google Scholar 

  • Huang Y, Cai X, Zou Z, Wang S, Wang G, Wang Y (2014) Molecular cloning, characterization and expression analysis of three heat shock responsive genes from Haliotis diversicolor. Fish Shellfish Immunol 36:590–599

    Article  CAS  Google Scholar 

  • James KJ, Carey B, O’halloran J, Škrabáková Z (2010) Shellfish toxicity: human health implications of marine algal toxins. Epidemiol Infect 138:927–940

    Article  CAS  Google Scholar 

  • Kashiwagi A, Kashiwagi K, Takase M, Hanada H, Nakamura M (1997) Comparison of catalase in diploid and haploid Rana rugosa using heat and chemical inactivation techniques. Comput Biochem Physiol B 118:499–503

    Article  CAS  Google Scholar 

  • Lelong A, Hégaret H, Soudant P, Bates SS (2012) Pseudo-nitzschia (Bacillariophyceae) species, domoic acid and amnesic shellfish poisoning: revisiting previous paradigms. Phycologia 51:168–216

    Article  CAS  Google Scholar 

  • Liu H, Kelly MS, Campbell DA, Dong SL, Zhu JX, Wang SF (2007) Exposure to domoic acid affects larval development of king scallop Pecten maximus (Linnaeus, 1758). Aquat Toxicol 81:152–158

    Article  CAS  Google Scholar 

  • Liu H, Kelly MS, Campbell DA, Fang JG, Zhu JX (2008) Accumulation of domoic acid and its effect on juvenile king scallop Pecten maximus (Linnaeus, 1758). Aquaculture 284:224–230

    Article  CAS  Google Scholar 

  • Mafra LL Jr, Bricelj VM, Ouellette C, Léger C, Bates SS (2009) Mechanisms contributing to low domoic acid uptake by oysters feeding on Pseudo-nitzschia cells. I. Filtration and pseudofeces production. Aquat Biol 6:201–212

    Article  Google Scholar 

  • Mafra LL Jr, Bricelj VM, Ouellette C, Bates SS (2010) Feeding mechanics as the basis for differential uptake of the neurotoxin domoic acid by oysters, Crassostrea virginica, and mussels, Mytilus edulis. Aquat Toxicol 97:160–171

    Article  CAS  Google Scholar 

  • Manfrin C, Dreos R, Battistella S, Beran A, Gerdol M, Varotto L, Lanfranchi G, Venier P, Pallavicini A (2010) Mediterranean mussel gene expression profile induced by okadaic acid exposure. Environ Sci Technol 44:8276–8283

    Article  CAS  Google Scholar 

  • Miles AT, Hawksworth GM, Beattie JH, Rodilla V (2000) Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Crit Rev Biochem Mol Biol 35:35–70

    Article  CAS  Google Scholar 

  • Parsons ML, Dortch Q, Turner RE (2002) Sedimentological evidence of an increase in Pseudo-nitzschia (Bacillariophyceae) abundance in response to coastal eutrophication. Limnol Oceanogr 47:551–558

    Article  Google Scholar 

  • Perl TM, Bédard L, Kosatsky T, Hockin JC, Todd EC, Remis RS (1990) An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N Engl J Med 322:1775–1780

    Article  CAS  Google Scholar 

  • Qiu J, Ma F, Fan H, Li A (2013) Effects of feeding Alexandrium tamarense, a paralytic shellfish toxin producer, on antioxidant enzymes in scallops (Patinopecten yessoensis) and mussels (Mytilus galloprovincialis). Aquaculture 396:76–81

    Article  Google Scholar 

  • Todd ECD (1993) Domoic acid and amnesic shellfish poisoning—a review. J. Food Protect 56:69–83

    Article  CAS  Google Scholar 

  • Trainer VL, Bates SS, Lundholm N, Thessen AE, Cochlan WP, Adams NG, Trick CG (2012) Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. Harmful Algae 14:271–300

    Article  Google Scholar 

  • Van Dolah FM (2000) Marine algal toxins: origins, health effects, and their increased occurrence. Environ Health Perspect 108:133–141

    Article  Google Scholar 

  • Vargas-Albores F, Barracco MA (2001) Mecanismos de Defensa de los Moluscos Bivalvos, con Énfasis en Pectínidos. In: Los Moluscos Pectínidos de Iberoamérica: Ciencia y Acuicultura; Maeda-Martínez AN (ed). Limusa: Mexico City, pp 127–146 (in Spanish with English abstract)

  • Wang L, Song L, Ni D, Zhang H, Liu W (2009) Alteration of metallothionein mRNA in bay scallop Argopecten irradians under cadmium exposure and bacteria challenge. Comp Biochem Physiol C 149:50–57

    Google Scholar 

  • Zabaglo K, Chrapusta E, Bober B, Kaminski A, Adamski M, Bialczyk J (2016) Environmental roles and biological activity of domoic acid: a review. Algal Res 13:94–101

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the project titled ‘Development and commercialization of high density low temperature plasma based seawater sterilization pulification system’ funded by the Ministry of Oceans and Fisheries, and by Korea Institute of Ocean Science and Technology (PE99832), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol Young Choi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J.A., Choi, C.Y. & Park, HS. Exposure to domoic acid causes oxidative stress in bay scallops Argopecten irradians. Fish Sci 86, 701–709 (2020). https://doi.org/10.1007/s12562-020-01431-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-020-01431-3

Keywords

Navigation