Skip to main content

Advertisement

Log in

Arsenic in the rock–soil–plant system and related health risk in a magmatic–metamorphic belt, West of Iran

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Following earlier reports of water contamination and arsenic (As) toxicity symptoms in residents of Kurdistan Province, As was determined in rock, soil and plant samples to investigate its fate from rock to crops and its potential effects on human health. Total As content ranged from 4.9 to 10,000 mg/kg, 7.7–430 mg/kg and < 0.05–25,079 µg/kg (dry weight) in rock, soil and plant samples, respectively. The Qorveh–Bijar region data indicated that magmatic differentiation has enriched late magmatic fluids in As. High rare earth elements concentration, dissociation coefficient, and positive Eu anomaly in volcanic rocks, indicated the prevalence of intermediate to felsic composition. The highest As concentration was measured in travertine. In soil, As average level in Qorveh and Bijar was 48.5 and 107 mg/kg, respectively. Higher pollution index and geoaccumulation index (Igeo) were also calculated for Bijar County. The As concentration in crop samples was greater than the recommended maximum permissible concentration for foodstuff. Mann–Whitney U test revealed significant differences between As concentration in different plant species and no difference between plants in Bijar and Qorveh. Also, alfalfa displayed the highest biological accumulation coefficient among the investigated plants. The calculated chronic daily intake of As in Bijar County was higher than the recommended levels for wheat and barley grains. Moreover, the hazard quotient (HQ) and incremental lifetime cancer risk assessments revealed high non-cancer (HQ > 1 for both adults and children) and cancer (particularly for barley in Bijar) risks for inhabitants via consumption of As contaminated crops cultivated in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamo, P., Iavazzo, P., Albanese, S., Agrelli, D., De Vivo, B., & Lima, A. (2014). Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils. Science of the Total Environment, 500, 11–22.

    Google Scholar 

  • Adriano, D. C. (2001). Trace elements in terrestrial environments, biogeochemistry, bioavailability and risks of metals. New York: Springer.

    Google Scholar 

  • Ahmed, K. M., Imam, M. B., Akhter, S. H., Hasan, M. A., & Khan, A. A. (2001). Sedimentology and mineralogy of arsenic contaminated aquifers in the Bengal Delta of Bangladesh. In Groundwater arsenic contamination in the Bengal Delta Plain of Bangladesh. Proc. KTH-Dhaka University Seminar. KTH Spec. Publ., TRITA-AMI Report (Vol. 3084, pp. 97–108).

  • Alam, M. G. M., Snow, E. T., & Tanaka, A. (2003). Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh. Science of the Total Environment, 308(1–3), 83–96.

    CAS  Google Scholar 

  • Amjadian, K., Pirouei, M., Mehr, M. R., Shakeri, A., Rasool, S. K., & Haji, D. I. (2018). Contamination, health risk, mineralogical and morphological status of street dusts-case study: Erbil metropolis, Kurdistan Region-Iraq. Environmental Pollution, 243, 1568–1578.

    CAS  Google Scholar 

  • Bao, Z., Zhao, Z., Guha, J., & Williams, A. E. (2004). HFSE, REE, and PGE geochemistry of three sedimentary rock-hosted disseminated gold deposits in southwestern Guizhou Province. China. Geochemical Journal, 38(4), 363–381.

    CAS  Google Scholar 

  • Barati, A. H., Maleki, A., & Alasvand, M. (2010). Multi-trace elements level in drinking water and the prevalence of multi-chronic arsenical poisoning in residents in the west area of Iran. Science of the Total Environment, 408(7), 1523–1529.

    CAS  Google Scholar 

  • Bernasconi, A., Glover, N., & Viljoen, R. P. (1980). The geology and geochemistry of the senator antimony deposit—Turkey. Mineralium Deposita, 15(3), 259–274.

    CAS  Google Scholar 

  • Bhattacharya, P., Samal, A. C., Majumdar, J., & Santra, S. C. (2010). Arsenic contamination in rice, wheat, pulses, and vegetables: a study in an arsenic affected area of West Bengal, India. Water, Air, and Soil Pollution, 213(1–4), 3–13.

    CAS  Google Scholar 

  • Bhattacharya, P., Welch, A. H., Stollenwerk, K. G., McLaughlin, M. J., Bundschuh, J., & Panaullah, G. (2007). Arsenic in the environment: biology and chemistry. Science of the Total Environment, 379(2–3), 109–120.

    CAS  Google Scholar 

  • Bissen, M., & Frimmel, F. H. (2003). Arsenic—a review. Part I: occurrence, toxicity, speciation, mobility. Acta hydrochimica et hydrobiologica, 31(1), 9–18.

    CAS  Google Scholar 

  • Boni, M., Gilg, H. A., Balassone, G., Schneider, J., Allen, C. R., & Moore, F. (2007). Hypogene Zn carbonate ores in the Angouran deposit NW Iran. Mineralium Deposita, 42(8), 799–820.

    CAS  Google Scholar 

  • Bundschuh, J., García, M. E., Birkle, P., Cumbal, L., Bhattacharya, P., & Matschullat, J. (2007). Groundwater arsenic in rural Latin America—Occurrence, Health effects and remediation experiences. Natural Arsenic in Groundwater of Latin America-Occurrence, health impact and Remediation. The Netherlands: AA Balkema Publisher.

  • Canadian Council of Ministers of the Environment (CCME) (2007). Canadian soil quality guidelines for the protection of environmental and human health. Canadian Council of Minister of the Environment.

  • Chen, Y., Huang, B., Hu, W., Weindorf, D. C., Liu, X., & Niedermann, S. (2014). Assessing the risks of trace elements in environmental materials under selected greenhouse vegetable production systems of China. Science of the Total Environment, 470, 1140–1150.

    Google Scholar 

  • Conklin, A. R. (2013). Introduction to soil chemistry: Analysis and instrumentation. New Jersy: Wiley.

    Google Scholar 

  • Dradrach, A., Karczewska, A., & Szopka, K. (2020). Arsenic accumulation by red fescue (Festuca rubra) growing in mine affected soils-Findings from the field and greenhouse studies. Chemosphere, 248, 126045.

    CAS  Google Scholar 

  • Edwards, S. C., MacLeod, C. L., & Lester, J. N. (1998). The bioavailability of copper and mercury to the common nettle (Urtica dioica) and the earthworm Eisenia fetida from contaminated dredge spoil. Water, Air, and Soil Pollution, 102(1–2), 75–90.

    CAS  Google Scholar 

  • Farooq, S. H., Chandrasekharam, D., Dhanachandra, W., & Ram, K. (2019). Relationship of arsenic accumulation with irrigation practices and crop type in agriculture soils of Bengal Delta India. Applied Water Science, 9(5), 119.

    Google Scholar 

  • Fernández-Nieto, C., Torres-Ruiz, J., Subías Pérez, I., Fanlo González, I., & González López, J. M. (2003). Genesis of Mg–Fe carbonates from the Sierra Menera magnesite-siderite deposits, Northeast Spain: evidence from fluid inclusions, trace elements, rare earth elements, and stable isotope data. Economic Geology, 98(7), 1413–1426.

    Google Scholar 

  • Ghezeljeh, E. A., Mesgaran, D. M., Moghaddam, N. H., & Vakili, A. (2011). Bulk density, chemical composition and in vitro gas production parameters of Iranian barley grain cultivars grown at different selected climates. African Journal of Agricultural Research, 6(5), 1226–1232.

    Google Scholar 

  • Halder, D., Biswas, A., Šlejkovec, Z., Chatterjee, D., Nriagu, J., Jacks, G., et al. (2014). Arsenic species in raw and cooked rice: Implications for human health in rural Bengal. Science of the Total Environment, 497, 200–208.

    Google Scholar 

  • Henderson, P. (Ed.). (2013). Rare earth element geochemistry (Vol. 2). Amsterdam: Elsevier.

    Google Scholar 

  • Hossain, M. F. (2006). Arsenic contamination in Bangladesh—an overview. Agriculture, Ecosystems and Environment, 113(1–4), 1–16.

    CAS  Google Scholar 

  • Hu, Y., Liu, X., Bai, J., Shih, K., Zeng, E. Y., & Cheng, H. (2013). Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environmental Science and Pollution Research, 20(9), 6150–6159.

    CAS  Google Scholar 

  • Huang, M., Zhou, S., Sun, B., & Zhao, Q. (2008). Heavy metals in wheat grain: assessment of potential health risk for inhabitants in Kunshan, China. Science of the Total Environment, 405(1–3), 54–61.

    CAS  Google Scholar 

  • Huang, R. Q., Gao, S. F., Wang, W. L., Staunton, S., & Wang, G. (2006). Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China. Science of the Total Environment, 368(2–3), 531–541.

    CAS  Google Scholar 

  • Jones, A. P., Wall, F., & Williams, C. T. (1995). Rare earth minerals: chemistry, origin and ore deposits (Vol. 7). Berlin: Springer.

    Google Scholar 

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Berlin: Springer.

    Google Scholar 

  • Karimi, A., Ahmadi, A., & Partabian, A. (2019). Potential soil pollution by heavy metals in Kurdistan region, western Iran: the impact of ultramafic bedrock. Geopersia. https://doi.org/10.22059/geope.2019.273444.648443.

    Article  Google Scholar 

  • Kaur, G., Kumar, R., Mittal, S., Sahoo, P. K., & Vaid, U. (2019). Ground/drinking water contaminants and cancer incidence: A case study of rural areas of South West Punjab, India. Human and Ecological Risk Assessment: An International Journal, 1–22.https://doi.org/10.1080/10807039.2019.1705145

  • Keshavarzi, B. (2011). Medical geology and the source of arsenic in northern sanandaj-sirjan magmatic–metamorphic belt. Ph. D dissertation, Shiraz University.

  • Keshavarzi, B., Moore, F., Ansari, M., Mehr, M. R., Kaabi, H., & Kermani, M. (2015a). Macronutrients and trace metals in soil and food crops of Isfahan Province, Iran. Environmental Monitoring and Assessment, 187(1), 4113.

    Google Scholar 

  • Keshavarzi, B., Moore, F., Mosaferi, M., & Rahmani, F. (2011). The source of natural arsenic contamination in groundwater, west of Iran. Water Quality, Exposure and Health, 3(3–4), 135–147.

    CAS  Google Scholar 

  • Keshavarzi, B., Seradj, A., Akbari, Z., Moore, F., Shahraki, A. R., & Pourjafar, M. (2015b). Chronic arsenic toxicity in sheep of Kurdistan province, western Iran. Archives of Environmental Contamination and Toxicology, 69(1), 44–53.

    CAS  Google Scholar 

  • Kumar, R., Kumar, R., Mittal, S., Arora, M., & Babu, J. N. (2016). Role of soil physicochemical characteristics on the present state of arsenic and its adsorption in alluvial soils of two agri-intensive region of Bathinda, Punjab, India. Journal of Soils and Sediments, 16(2), 605–620.

    CAS  Google Scholar 

  • Kumar, R., Vaid, U., & Mittal, S. (2018). Water crisis: issues and challenges in Punjab. In Water resources management (pp. 93–103). Springer, Singapore.

  • Kundu, M., Ghosh, P., Mitra, S., Das, J. K., Sau, T. J., Banerjee, S., et al. (2011). Precancerous and non-cancer disease endpoints of chronic arsenic exposure: the level of chromosomal damage and XRCC3 T241M polymorphism. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 706(1), 7–12.

    CAS  Google Scholar 

  • Lee, J. S., Lee, S. W., Chon, H. T., & Kim, K. W. (2008). Evaluation of human exposure to arsenic due to rice ingestion in the vicinity of abandoned Myungbong Au–Ag mine site, Korea. Journal of Geochemical Exploration, 96(2–3), 231–235.

    CAS  Google Scholar 

  • Liu, C. P., Luo, C. L., Gao, Y., Li, F. B., Lin, L. W., Wu, C. A., et al. (2010). Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China. Environmental Pollution, 158(3), 820–826.

    CAS  Google Scholar 

  • Lottermoser, B. G. (1992). Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews, 7(1), 25–41.

    Google Scholar 

  • Martin, M., Bonifacio, E., Hossain, K. J., Huq, S. I., & Barberis, E. (2014). Arsenic fixation and mobilization in the soils of the Ganges and Meghna floodplains. Impact of Pedoenvironmental Properties. Geoderma, 228, 132–141.

    Google Scholar 

  • Mathee, A., Kootbodien, T., Kapwata, T., & Naicker, N. (2018). Concentrations of arsenic and lead in residential garden soil from four Johannesburg neighborhoods. Environmental Research, 167, 524–527.

    CAS  Google Scholar 

  • Mosaferi, M., Yunesian, M., Dastgiri, S., Mesdaghinia, A., & Esmailnasab, N. (2008). Prevalence of skin lesions and exposure to arsenic in drinking water in Iran. Science of the Total Environment, 390(1), 69–76.

    CAS  Google Scholar 

  • Myrvang, M. B., Gjengedal, E., Heim, M., Krogstad, T., & Almås, Å. R. (2016). Geochemistry of barium in soils supplied with carbonatite rock powder and barium uptake to plants. Applied Geochemistry, 75, 1–8.

    CAS  Google Scholar 

  • Nasrabadi, T., & Bidabadi, N. S. (2013). Evaluating the spatial distribution of quantitative risk and hazard level of arsenic exposure in groundwater, case study of Qorveh County, Kurdistan Iran. Iranian Journal of Environmental Health Science and Engineering, 10(1), 30.

    Google Scholar 

  • National Food Authority. (1993). ‘Australian Food Standard Code: March, 1993’. Australian Govt. Pub. Service, Canberra.

  • Nickson, R. T., McArthur, J. M., Shrestha, B., Kyaw-Myint, T. O., & Lowry, D. (2005). Arsenic and other drinking water quality issues, Muzaffargarh District Pakistan. Applied Geochemistry, 20(1), 55–68.

    CAS  Google Scholar 

  • Ongley, L. K., Sherman, L., Armienta, A., & Salinas, C. F. (2007). Arsenic in the soils of Zimapán. Mexico. Environmental Pollution, 145(3), 793–799.

    CAS  Google Scholar 

  • Otones, V., Álvarez-Ayuso, E., García-Sánchez, A., Santa Regina, I., & Murciego, A. (2011). Arsenic distribution in soils and plants of an arsenic impacted former mining area. Environmental Pollution, 159(10), 2637–2647.

    CAS  Google Scholar 

  • Pentecost, A. (2005). Travertine. Berlin: Springer.

    Google Scholar 

  • Pourreza, A., Pourreza, H., Abbaspour-Fard, M. H., & Sadrnia, H. (2012). Identification of nine Iranian wheat seed varieties by textural analysis with image processing. Computers and Electronics in Agriculture, 83, 102–108.

    Google Scholar 

  • Qing, X., Yutong, Z., & Shenggao, L. (2015). Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicology and Environmental Safety, 120, 377–385.

    CAS  Google Scholar 

  • Rahman, M. A., Hasegawa, H., Rahman, M. M., Rahman, M. A., & Miah, M. A. M. (2007). Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere, 69(6), 942–948.

    CAS  Google Scholar 

  • Rahman, M. M., Asaduzzaman, M., & Naidu, R. (2011). Arsenic exposure from rice and water sources in the Noakhali district of Bangladesh. Water Quality, Exposure and Health, 3(1), 1–10.

    CAS  Google Scholar 

  • Rahman, M. M., Asaduzzaman, M., & Naidu, R. (2013). Consumption of arsenic and other elements from vegetables and drinking water from an arsenic-contaminated area of Bangladesh. Journal of Hazardous Materials, 262, 1056–1063.

    CAS  Google Scholar 

  • Rana, T., Bera, A. K., Bhattacharya, D., Das, S., Pan, D., & Das, S. K. (2012). Chronic arsenicosis in goats with special reference to its exposure, excretion and deposition in an arsenic contaminated zone. Environmental Toxicology and Pharmacology, 33(2), 372–376.

    CAS  Google Scholar 

  • Samal, A. C. (2005). An investigation on accumulation of arsenic in ecosystem of Gangetic West Bengal and assessment of potential health risk. Ph. D Thesis, University of Kalyani.

  • Sharifi, R., Moore, F., & Keshavarzi, B. (2014). Potential health risks of arsenic, antimony and mercury in the Takab geothermal field, NW Iran. International Journal of Environmental Studies, 71(3), 372–390.

    CAS  Google Scholar 

  • Sharifi, R., Moore, F., Keshavarzi, B., & Badiei, S. (2018). Assessment of health risks of arsenic exposure via consumption of crops. Exposure and Health, 10(2), 129–143.

    CAS  Google Scholar 

  • Sharma, S., Kumar, R., Sahoo, P. K., & Mittal, S. (2020). Geochemical relationship and translocation mechanism of arsenic in rice plants: A case study from health prone south west Punjab, India. Groundwater for Sustainable Development, 100333.

  • Smith, E., Weber, J., & Juhasz, A. L. (2009). Arsenic distribution and bioaccessibility across particle fractions in historically contaminated soils. Environmental Geochemistry and Health, 31(1), 85–92.

    CAS  Google Scholar 

  • States, J. C., Srivastava, S., Chen, Y., & Barchowsky, A. (2008). Arsenic and cardiovascular disease. Toxicological Sciences, 107(2), 312–323.

    Google Scholar 

  • Tu, S., & Ma, L. Q. (2003). Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environmental and Experimental Botany, 50(3), 243–251.

    CAS  Google Scholar 

  • USEPA (U.S. Environmental Protection Agency) (1998). Integrated risk information system: arsenic, inorganic, CASRN 7440-38-2 Washington, DC.

  • USEPA (United States Environmental Protection Agency) (1989). Risk assessment guidance for superfund. Human Health Evaluation Manual (Part A). Interim Final, vol. I. Washington (DC): United States Environmental Protection Agency; EPA/540/1-89/002.

  • USEPA (United States Environmental Protection Agency) (2000). Handbook for non-cancer health effects evaluation. Washington (DC): US Environmental Protection Agency.

  • USEPA (US Environmental Protection Agency) (2001). Supplemental guidance for developing soil screening levels for superfund sites. OSWER 9355.4–24.

  • USEPA (US Environmental Protection Agency). 2008. Atlas Asbestos Mine Superfund Site. Releases Exposure and Risk Assessment for Clear Creek Management Area. United States Environmental Protection Agency, Region 9, San Francisco, CA; [from: https://www.epa.gov/region9/toxic/noa/clearcreek/pdf/CCMA-exposure-risk-assessment-factsheet.pdf].

  • Wakita, H., Rey, P., & Schmitt, R. A. (1971). Abundances of the 14 rare-earth elements and 12 other trace elements in Apollo 12 samples: five igneous and one breccia rocks and four soils. In Lunar and Planetary Science Conference Proceedings (Vol. 2, p. 1319).

  • Wang, Y., Zeng, X., Lu, Y., Su, S., Bai, L., Li, L., et al. (2015). Effect of aging on the bioavailability and fractionation of arsenic in soils derived from five parent materials in a red soil region of Southern China. Environmental Pollution, 207, 79–87.

    CAS  Google Scholar 

  • Warren, G. P., Alloway, B. J., Lepp, N. W., Singh, B., Bochereau, F. J. M., & Penny, C. (2003). Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides. Science of the Total Environment, 311(1–3), 19–33.

    CAS  Google Scholar 

  • Wen, X., Lu, J., Wu, J., Lin, Y., & Luo, Y. (2019). Influence of coastal groundwater salinization on the distribution and risks of heavy metals. Science of The Total Environment, 652, 267–277.

    Google Scholar 

  • World Health Organization (WHO) (2011). Evaluations of certain contaminants in food. Seventy-second report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series; no. 959.

  • Yang, Z., Lu, W., Long, Y., Bao, X., & Yang, Q. (2011). Assessment of heavy metals contamination in urban topsoil from Changchun city, China. Journal of Geochemical Exploration, 108(1), 27–38.

    CAS  Google Scholar 

  • Yu, H. Y., Li, F. B., Liu, C. S., Huang, W., Liu, T. X., & Yu, W. M. (2016). Iron redox cycling coupled to transformation and immobilization of heavy metals: implications for paddy rice safety in the red soil of South China. In Advances in Agronomy (Vol. 137, pp. 279–317). Academic Press.

  • Zhang, Z., Juying, L., Mamat, Z., & QingFu, Y. (2016). Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala river, northwest China. Ecotoxicology and Environmental Safety, 126, 94–101.

    CAS  Google Scholar 

  • Zhao, F. J., Ma, J. F., Meharg, A. A., & McGrath, S. P. (2009). Arsenic uptake and metabolism in plants. New Phytologist, 181(4), 777–794.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the Research Committee and Medical Geology Research Center of Shiraz University for logistic and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meisam Rastegari Mehr or Behnam Keshavarzi.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastegari Mehr, M., Keshavarzi, B., Moore, F. et al. Arsenic in the rock–soil–plant system and related health risk in a magmatic–metamorphic belt, West of Iran. Environ Geochem Health 42, 3659–3673 (2020). https://doi.org/10.1007/s10653-020-00599-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00599-y

Keywords

Navigation