Skip to main content
Log in

Besov class via heat semigroup on Dirichlet spaces II: BV functions and Gaussian heat kernel estimates

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We introduce the class of bounded variation (BV) functions in a general framework of strictly local Dirichlet spaces with doubling measure. Under the 2-Poincaré inequality and a weak Bakry–Émery curvature type condition, this BV class is identified with the heat semigroup based Besov class \(\mathbf {B}^{1,1/2}(X)\) that was introduced in our previous paper. Assuming furthermore a quasi Bakry–Émery curvature type condition, we identify the Sobolev class \(W^{1,p}(X)\) with \(\mathbf {B}^{p,1/2}(X)\) for \(p>1\). Consequences of those identifications in terms of isoperimetric and Sobolev inequalities with sharp exponents are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, Robert A., Fournier, John J.F.: Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam), 2nd edn. Elsevier/Academic Press, Amsterdam (2003)

  2. Alonso-Ruiz, P., Baudoin, F., Chen, L., Rogers, L.G., Shanmugalingam, N., Teplyaev, A.: Besov class via heat semigroup on Dirichlet spaces I: Sobolev type inequalities. J. Funct. Anal. 278(11), 108459 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alonso-Ruiz, P., Baudoin, F., Chen, L., Rogers, L.G., Shanmugalingam, N., Teplyaev, A.: Besov class via heat semigroup on Dirichlet spaces III: BV functions and sub-Gaussian heat kernel estimates (2019). arXiv:1903.10078

  4. Alonso-Ruiz, P., Kelleher, D.J., Teplyaev, A.: Energy and Laplacian on Hanoi-type fractal quantum graphs. J. Phys. A 49(16), 165206, 36, (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosio, L., Brué, E., Semola, D.: Rigidity of the 1-Bakry–Émery inequality and sets of finite perimeter in RCD spaces. Geom. Funct. Anal. 29(4), 949–1001 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosio, L., Erbar, M., Savaré, G.: Optimal transport, Cheeger energies and contractivity of dynamic transport distances in extended spaces. Nonlinear Anal. 137, 77–134 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)

    MATH  Google Scholar 

  8. Ambrosio, L.: Fine properties of sets of finite perimeter in doubling metric measure spaces. In: Calculus of Variations, Nonsmooth Analysis and Related Topics, Volume 10 of Set Valued Anal, pp. 111–128 (2002)

  9. Ambrosio, L., Di Marino, S.: Equivalent definitions of \(BV\) space and of total variation on metric measure spaces. J. Funct. Anal. 266(7), 4150–4188 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163(7), 1405–1490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Auscher, P., Coulhon, T., Duong, X.T., Hofmann, S.: Riesz transform on manifolds and heat kernel regularity. Ann. Sci. École Norm. Sup. (4) 37(6), 911–957 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bakry, D., Baudoin, F., Bonnefont, M., Chafaï, D.: On gradient bounds for the heat kernel on the Heisenberg group. J. Funct. Anal. 255(8), 1905–1938 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Barbu, V., Röckner, M.: Stochastic variational inequalities and applications to the total variation flow perturbed by linear multiplicative noise. Arch. Ration. Mech. Anal. 209(3), 797–834 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Baudoin, F., Bonnefont, M.: Log-Sobolev inequalities for subelliptic operators satisfying a generalized curvature dimension inequality. J. Funct. Anal. 262(6), 2646–2676 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Baudoin, F., Bonnefont, M., Garofalo, N.: A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincaré inequality. Math. Ann. 358(3–4), 833–860 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Baudoin, F., Bonnefont, M.: Reverse Poincaré inequalities, isoperimetry, and Riesz transforms in Carnot groups. Nonlinear Anal. 131, 48–59 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Baudoin, F., Garofalo, N.: Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries. J. Eur. Math. Soc. (JEMS) 19(1), 151–219 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Baudoin, F., Kelleher, D.J.: Differential one-forms on Dirichlet spaces and Bakry-Emery estimates on metric graphs. Trans. Am. Math. Soc. 371(5), 3145–3178 (2019)

  19. Baudoin, F., Kim, B.: Sobolev, Poincaré, and isoperimetric inequalities for subelliptic diffusion operators satisfying a generalized curvature dimension inequality. Rev. Mat. Iberoam. 30(1), 109–131 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bennett, C., Sharpley, R.: Interpolation of operators. In: Pure and Applied Mathematics, vol. 129. Academic Press Inc, Boston, MA (1988)

  21. Beurling, A., Deny, J.: Espaces de Dirichlet. I. Le cas élémentaire. Acta Math. 99, 203–224 (1958)

    MATH  Google Scholar 

  22. Biroli, M., Mosco, U.: Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 6(1), 37–44 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Biroli, M., Mosco, U.: Sobolev inequalities on homogeneous spaces. Potential Anal. 4(4), 311–324 (1995). Potential theory and degenerate partial differential operators (Parma)

    Article  MathSciNet  MATH  Google Scholar 

  24. Biroli, M., Mosco, U.: Kato space for Dirichlet forms. Potential Anal. 10(4), 327–345 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cheeger, J.: Differentiability of lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, Z.-Q., Fukushima, M.: Symmetric Markov processes, time change, and boundary theory. In: London Mathematical Society Monographs Series, vol. 35. Princeton University Press, Princeton, NJ (2012)

  27. Coulhon, T., Jiang, R., Koskela, P., Sikora, A.: Gradient estimates for heat kernels and harmonic functions. J. Funct. Anal. 278(8), 108398 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. De Giorgi, E., Letta, G.: Une notion générale de convergence faible pour des fonctions croissantes d’ensemble. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4(11), 61–99 (1977)

    MathSciNet  MATH  Google Scholar 

  29. Di Marino, S., Squassina, M.: New characterizations of Sobolev metric spaces. J. Funct. Anal. 276(6), 1853–1874 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Eldredge, N.: Gradient estimates for the subelliptic heat kernel on \(H\)-type groups. J. Funct. Anal. 258(2), 504–533 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Erbar, M., Kuwada, K., Sturm, K.-T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Invent. Math. 201(3), 993–1071 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Evans, L.C.: Partial differential equations, Volume 19 of Graduate Studies in Mathematics, 2nd edb. American Mathematical Society, Providence, RI (2010)

  33. Federer, H.: Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer, New York Inc., New York (1969)

  34. Fontaine, D., Smith, T., Teplyaev, A.: Resistance of random Sierpiński gaskets. In: Quantum Graphs and Their Applications, Volume 415 of Contemp. Math., pp. 121–136. Amer. Math. Soc., Providence, RI (2006)

  35. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet forms and symmetric Markov processes, Volume 19 of De Gruyter Studies in Mathematics, extended edition. Walter de Gruyter & Co., Berlin (2011)

  36. Garofalo, N., Nhieu, D.-M.: Isoperimetric and Sobolev inequalities for Carnot–Carathéodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math. 49(10), 1081–1144 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gigli, N., Han, B.-X.: Independence on \(p\) of weak upper gradients on \(\rm RCD\) spaces. J. Funct. Anal. 271(1), 1–11 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gogatishvili, A., Koskela, P., Shanmugalingam, N.: Interpolation properties of Besov spaces defined on metric spaces. Math. Nachr. 283(2), 215–231 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Grigor’yan, A.A.: The heat equation on noncompact Riemannian manifolds. Mat. Sb. 182(1), 55–87 (1991)

    MathSciNet  MATH  Google Scholar 

  40. Haeseler, S.: Heat kernel estimates and related inequalities on metric graphs (Jan 2011). arXiv:1101.3010

  41. Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145(688), x+101 (2000)

    MATH  Google Scholar 

  42. Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext, Springer, New York (2001)

    Book  MATH  Google Scholar 

  43. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.T.: Sobolev spaces on Metric Measure Spaces, Volume 27 of New Mathematical Monographs, An Approach Based on Upper Gradients. Cambridge University Press, Cambridge (2015)

  44. Hino, M.: Indices of Dirichlet forms [translation of MR3135336]. Sugaku Expos. 30(2), 187–205 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Hinz, M., Kelleher, D.J., Teplyaev, A.: Metrics and spectral triples for Dirichlet and resistance forms. J. Noncommut. Geom. 9(2), 359–390 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hinz, M., Röckner, M., Teplyaev, A.: Vector analysis for Dirichlet forms and quasilinear PDE and SPDE on metric measure spaces. Stoch. Process. Appl. 123(12), 4373–4406 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hinz, M., Teplyaev, A.: Dirac and magnetic Schrödinger operators on fractals. J. Funct. Anal. 265(11), 2830–2854 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hinz, M., Teplyaev, A.: Vector analysis on fractals and applications. In: Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics. II. Fractals in Applied Mathematics, Volume 601 of Contemp. Math., pp. 147–163. Amer. Math. Soc., Providence, RI (2013)

  49. Hinz, M., Zähle, M.: Semigroups, potential spaces and applications to (S)PDE. Potential Anal. 36(3), 483–515 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Jiang, R.: The Li–Yau inequality and heat kernels on metric measure spaces. J. Math. Pures Appl. (9) 104(1), 29–57 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Jonsson, A., Wallin, H.: A trace theorem for generalized Besov spaces with three indexes. In: Fourier Analysis and Approximation Theory (Proc. Colloq., Budapest, 1976), Vol. I, Volume 19 of Colloq. Math. Soc. János Bolyai, pp. 429–449. North-Holland, Amsterdam-New York (1978)

  52. Jonsson, A., Wallin, H.: A Whitney extension theorem in \(L_{p}\) and Besov spaces. Ann. Inst. Fourier (Grenoble) 28(1), 139–192 (1978). vi

    Article  MathSciNet  MATH  Google Scholar 

  53. Kajino, N.: Spectral asymptotics for Laplacians on self-similar sets. J. Funct. Anal. 258(4), 1310–1360 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kajino, N.: Heat kernel asymptotics for the measurable Riemannian structure on the Sierpinski gasket. Potential Anal. 36(1), 67–115 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. Kajino, N.: Analysis and geometry of the measurable Riemannian structure on the Sierpiński gasket. In: Fractal geometry and Dynamical Systems in Pure and Applied Mathematics. I. Fractals in Pure Mathematics, Volume 600 of Contemp. Math., pp. 91–133. Amer. Math. Soc., Providence, RI (2013)

  56. Khoshnevisan, D., Kim, K., Xiao, Y.: Intermittency and multifractality: a case study via parabolic stochastic PDEs. Ann. Probab. 45(6A), 3697–3751 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  57. Khoshnevisan, D., Kim, K., Xiao, Y.: A macroscopic multifractal analysis of parabolic stochastic PDEs. Commun. Math. Phys. 360(1), 307–346 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  58. Kigami, J.: Harmonic metric and Dirichlet form on the Sierpiński gasket. In: Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals (Sanda/Kyoto, 1990), Volume 283 of Pitman Res. Notes Math. Ser., pp. 201–218. Longman Sci. Tech., Harlow (1993)

  59. Kigami, J.: Harmonic calculus on p.c.f. self-similar sets. Trans. Am. Math. Soc. 335(2), 721–755 (1993)

    MathSciNet  MATH  Google Scholar 

  60. Kigami, J.: Analysis on Fractals. Cambridge Tracts in Mathematics, vol. 143. Cambridge University Press, Cambridge (2001)

  61. Kigami, J.: Measurable Riemannian geometry on the Sierpinski gasket: the Kusuoka measure and the Gaussian heat kernel estimate. Math. Ann. 340(4), 781–804 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  62. Kigami, J.: Volume doubling measures and heat kernel estimates on self-similar sets. Mem. Am. Math. Soc. 199(932), viii+94 (2009)

    MathSciNet  MATH  Google Scholar 

  63. Kigami, J.: Resistance forms, quasisymmetric maps and heat kernel estimates. Mem. Am. Math. Soc. 216(1015), vi+132 (2012)

    MathSciNet  MATH  Google Scholar 

  64. Kinnunen, J., Korte, R., Shanmugalingam, N., Tuominen, H.: A characterization of Newtonian functions with zero boundary values. Calc. Var. Partial Differ. Equ. 43(3–4), 507–528 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  65. Koskela, P., Rajala, K., Shanmugalingam, N.: Lipschitz continuity of Cheeger-harmonic functions in metric measure spaces. J. Funct. Anal. 202(1), 147–173 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  66. Koskela, P., Shanmugalingam, N., Tyson, J.T.: Dirichlet forms, Poincaré inequalities, and the Sobolev spaces of Korevaar and Schoen. Potential Anal. 21(3), 241–262 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  67. Koskela, P., Shanmugalingam, N., Zhou, Y.: Geometry and analysis of Dirichlet forms (II). J. Funct. Anal. 267(7), 2437–2477 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  68. Koskela, P., Zhou, Y.: Geometry and analysis of Dirichlet forms. Adv. Math. 231(5), 2755–2801 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  69. Kotschwar, B.L.: Hamilton’s gradient estimate for the heat kernel on complete manifolds. Proc. Am. Math. Soc. 135(9), 3013–3019 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  70. Kusuoka, S.: Dirichlet forms on fractals and products of random matrices. Publ. Res. Inst. Math. Sci. 25(4), 659–680 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  71. Lahti, P.: A new Federer-type characterization of sets of finite perimeter in metric spaces. Arch. Ration. Mech. Anal. 236, 801–838 (2020). https://doi.org/10.1007/s00205-019-01483-5

  72. Ledoux, M.: Isoperimetry and Gaussian analysis. In: Lectures on Probability Theory and Statistics (Saint-Flour, 1994), Volume 1648 of Lecture Notes in Math.,pp. 165–294. Springer, Berlin (1996)

  73. Lenz, D., Stollmann, P., Veselić, I.: Generalized eigenfunctions and spectral theory for strongly local Dirichlet forms. In: Spectral Theory and analysis, Volume 214 of Oper. Theory Adv. Appl., pp. 83–106. Birkhäuser/Springer Basel AG, Basel (2011)

  74. Marola, N., Miranda Jr., M., Shanmugalingam, N.: Characterizations of sets of finite perimeter using heat kernels in metric spaces. Potential Anal. 45(4), 609–633 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  75. Maz’ya, V.: Sobolev Spaces; with Applications to Elliptic Partial Differential Equations. Springer, Berlin Heidelberg, Grundlehren der mathematischen Wissenschaften 342 (2011)

  76. Meyers, R., Strichartz, R.S., Teplyaev, A.: Dirichlet forms on the Sierpiński gasket. Pac. J. Math. 217(1), 149–174 (2004)

    Article  MATH  Google Scholar 

  77. Miranda Jr., M.: Functions of bounded variation on “good” metric spaces. J. Math. Pures Appl. (9) 82(8), 975–1004 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  78. Munteanu, I., Röckner, M.: Total variation flow perturbed by gradient linear multiplicative noise. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 21(1), 1850003, 28 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  79. Okoudjou, K.A., Rogers, L.G., Strichartz, R.S.: Szegö limit theorems on the Sierpiński gasket. J. Fourier Anal. Appl. 16(3), 434–447 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  80. Pietrushka-Pałuba, K.: Heat kernel characterisation of Besov-Lipschitz spaces on metric measure spaces. Manuscr. Math., 131, 199 (2010). https://doi.org/10.1007/s00229-009-0310-3

  81. Rogers, L.G., Teplyaev, A.: Laplacians on the basilica Julia sets. Commun. Pure Appl. Anal. 9(1), 211–231 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  82. Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequalities. Internat. Math. Res. Notices 2, 27–38 (1992)

    Article  MATH  Google Scholar 

  83. Saloff-Coste, L.: Aspects of Sobolev-type inequalities. London Mathematical Society Lecture Note Series, vol. 289. Cambridge University Press, Cambridge (2002)

  84. Savaré, G.: Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in \({\rm RCD}(K,\infty )\) metric measure spaces. Discrete Contin. Dyn. Syst. 34(4), 1641–1661 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  85. Strichartz, R.S.: Fractafolds based on the Sierpiński gasket and their spectra. Trans. Am. Math. Soc. 355(10), 4019–4043 (2003)

    Article  MATH  Google Scholar 

  86. Strichartz, R.S.: Function spaces on fractals. J. Funct. Anal. 198(1), 43–83 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  87. Strichartz, R.S., Teplyaev, A.: Spectral analysis on infinite Sierpiński fractafolds. J. Anal. Math. 116, 255–297 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  88. Sturm, K.T.: Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality. J. Math. Pures Appl. (9) 75(3), 273–297 (1996)

    MathSciNet  MATH  Google Scholar 

  89. Sturm, K.-T.: Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and \(L^p\)-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994)

    MathSciNet  MATH  Google Scholar 

  90. Sturm, K.-T.: Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations. Osaka J. Math. 32(2), 275–312 (1995)

    MathSciNet  MATH  Google Scholar 

  91. Teplyaev, A.: Energy and Laplacian on the Sierpiński gasket. In: Fractal Geometry and Applications: a Jubilee of Benoît Mandelbrot. Part 1, Volume 72 of Proc. Sympos. Pure Math., pp. 131–154. Amer. Math. Soc., Providence, RI (2004)

  92. Teplyaev, A.: Harmonic coordinates on fractals with finitely ramified cell structure. Can. J. Math. 60(2), 457–480 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  93. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. VEB Deutscher Verlag der Wissenschaften, Berlin (1978)

    MATH  Google Scholar 

  94. Varopoulos, N.T.: Small time Gaussian estimates of heat diffusion kernels. I. The semigroup technique. Bull. Sci. Math. 113(3), 253–277 (1989)

    MathSciNet  MATH  Google Scholar 

  95. von Renesse, M.-K., Sturm, K.-T.: Transport inequalities, gradient estimates, entropy, and Ricci curvature. Commun. Pure Appl. Math. 58(7), 923–940 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Naotaka Kajino for many stimulating and helpful discussions. The authors also thank the anonymous referee for comments that helped improve the exposition of the paper. P.A-R. was partly supported by the Feodor Lynen Fellowship, Alexander von Humboldt Foundation (Germany) the grant DMS #1951577 and #1855349 of the NSF (U.S.A.). F.B. was partly supported by the grant DMS #1660031 of the NSF (U.S.A.) and a Simons Foundation Collaboration grant. L.R. was partly supported by the grant DMS #1659643 of the NSF (U.S.A.). N.S. was partly supported by the grants DMS #1800161 and #1500440 of the NSF (U.S.A.). A.T. was partly supported by the grant DMS #1613025 of the NSF (U.S.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Baudoin.

Additional information

Communicated by L. Ambrosio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso-Ruiz, P., Baudoin, F., Chen, L. et al. Besov class via heat semigroup on Dirichlet spaces II: BV functions and Gaussian heat kernel estimates. Calc. Var. 59, 103 (2020). https://doi.org/10.1007/s00526-020-01750-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01750-4

Mathematics Subject Classification

Navigation