Skip to main content

Advertisement

Log in

Insight view of mechanical, electronic and thermodynamic properties of the novel intermetallic \(\hbox {REPt}_{{4}}\) \(\hbox {In}_{{4}}\) (RE \(=\) Eu, Gd, Tb, Dy, Ho) compounds via ab initio calculations

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the full potential linearized augmented plane wave method with the GGA approximation was employed to study the structural, elastic, electronic and thermal properties of the novel intermetallic \(\hbox {REPt}_4\hbox {In}_{4}\) (RE \(=\) Eu, Gd, Tb, Dy, Ho) compounds. Our findings demonstrate that the equilibrium lattice parameters are in good agreement with the available experimental measurements. The elastic constants (\(C_\mathrm{ij}\)) were also calculated to understand the mechanical properties and structural stability of the compounds. Furthermore, the density of states and the charge density distributions of the compounds were calculated to understand the nature of the bonding in the material. Our analysis of the calculated values of the Poisson’s ratio and the B/G ratio shows their ductile structure. Additionally, the temperature-dependent thermodynamic parameters are computed by the quasi-harmonic Debye model in the range of 0–600 K, where the primitive cell volume and thermal expansion coefficients have been obtained successfully. Consequently, this study on the structural, elastic, bonding and thermal properties of \(\hbox {REPt}_4\hbox {In}_4\) intermetallic compounds demonstrate that these compounds can be used as potential candidates in the domain of energy storage and electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dar S, Srivastava V, Tripathi S and Sakalle U 2018 Eur. Phys. J. Plus 133 541

    Article  Google Scholar 

  2. Liang J, Fan D, Jiang P, Liu H and Zhao W 2017 Intermetallics 87 27

    Article  CAS  Google Scholar 

  3. Kim K, Hun S and Suganuma K 2013 J. Alloys Compd. 352 226

    Article  Google Scholar 

  4. Kalychak M 1997 J. Alloys Compd. 262 341

    Article  Google Scholar 

  5. Tursina A, Nesterenko S, Seropegin Y and Kaczorowski D 2013 Intermetallics 32 194

    Article  CAS  Google Scholar 

  6. Zaremba V, Kalychak Y, Dubenskiy V, Hoffmann R, Rodewald U and Pöttgen R 2002 J. Solid State Chem. 169 118

    Article  CAS  Google Scholar 

  7. Rodewald U, Zaremba V, Galadzhun Y, Hoffmann R and Pöttgen R 2002 Z. Anorg.Allg. Chem. 628 2293

    Article  CAS  Google Scholar 

  8. Heying B, Rodewald U, Hermes W and Pöttgen R 2009 Z. Naturforsch. 64b 170

    Article  Google Scholar 

  9. Zaremba R, Rodewald U and Pöttgen R 2007 Monatsh Chem. 138 819

    Article  CAS  Google Scholar 

  10. Zaremba V, Rodewald U, Hoffmann R, Kalychak Y and Pöttgen R 2003 Z. Anorg. Allg. Chem. 629 1157

    Article  CAS  Google Scholar 

  11. Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J 2001 An augmented plane wave + local orbitals program for calculating crystal properties Schwarz K (ed) (Austria: Technische Universität Wien)

  12. Blaha P, Schwarz K and Luitz J 2001 A full potential wave package for calculating crystal properties (Austria: Vienna University of Technology)

  13. Perdew J, Ruzsinszky A, Csonka G, Vydrov O, Scuseria G, Constantin L et al 2008 Phys. Rev. Lett. 100 136406

    Article  Google Scholar 

  14. Kohn W and Sham L J 1965 Phys. Rev.140 A1133

    Article  Google Scholar 

  15. Jamal M 2012 Hex-elastic http://www.wien2k.at/reg_user/unsupported/

  16. Mehl M 1993 Phys. Rev. B 47 2493

    Article  CAS  Google Scholar 

  17. Dar S A, Srivastava V and Sakalle U K 2017 Mater. Res. Express 4 106104

    Article  Google Scholar 

  18. Otero-de-la-Roza A, Abbasi-Perez D and Luana V 2011 Comput. Phys. Commun. 182 2232

    Article  CAS  Google Scholar 

  19. Dar S A, Srivastava V and Sakalle U K 2017 J. Electron. Mater. 46 6870

    Article  CAS  Google Scholar 

  20. Murnaghan F 1944 Proc. Natl. Acad. Sci. USA 30 5390

    Google Scholar 

  21. Born M and Hang K 1982 Dynamical theory and experiments (Berlin: I. Publishers)

    Google Scholar 

  22. Voigt M 1928 Lehrbuch der Kristallphysik (Leipzig: Taubner)

    Google Scholar 

  23. Reuss A and Angew Z 1929 Math. Mech. 9 58

    Google Scholar 

  24. Pugh S F 1954 Philos. Mag. 45 823

    Article  CAS  Google Scholar 

  25. Pettifor D G 1992 Mater. Sci. Technol. 8 345

    Article  CAS  Google Scholar 

  26. Frantsevich I N, Voronov F F and Bokuta S A 1983 Elastic constants and elastic modules of metals and insulators Frantsevich I N (ed) (Kiev: Naukova Dumka) p 60

  27. Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244

    Article  CAS  Google Scholar 

  28. Benmessabih T, Amrani B, El Haj Hassan F, Hamdache F and Zoaeter M 2007 Physica B 392 309

    Article  CAS  Google Scholar 

  29. Khenata R, Bouhemadou A, Sahnoun M, Reshak A H, Baltache H and Rabah M 2006 Comput. Mat. Sci. 38 29

    Article  CAS  Google Scholar 

  30. Khenata R, Bouhemadou A, Reshak A H, Ahmed R, Bouhafs B, Rached D et al 2007 Phys. Rev. B 75 195131

    Article  Google Scholar 

  31. Reshak A H, Charifi Z and Baaziz H 2010 J. Solid State Chem. 183 1290

    Article  Google Scholar 

  32. Blanco M, Francisco E and Luana V 2004 Comput. Phys. Commun. 158 57

    Article  CAS  Google Scholar 

  33. Murtaza G, Gupta S K, Seddik T, Khenata R, Alahmed Z A, Ahmed R et al 2014 J. Alloys Compd. 597 36

    Article  CAS  Google Scholar 

  34. Bouhemadou A, Khenata R and Amrani B 2009 Physica B 404 3534

    Article  CAS  Google Scholar 

  35. Francisco E, Blanco M and Sanjurjo G 2001 Phys. Rev. B 63 094107

    Article  Google Scholar 

Download references

Acknowledgements

Author S Bin Omran acknowledges the financial support by the Deanship of Scientific Research at King Saud University, for funding the work through the Research Group Project number RG-1440-106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Yakoubi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouayed, M.Z., Yakoubi, A., Ahmed, R. et al. Insight view of mechanical, electronic and thermodynamic properties of the novel intermetallic \(\hbox {REPt}_{{4}}\) \(\hbox {In}_{{4}}\) (RE \(=\) Eu, Gd, Tb, Dy, Ho) compounds via ab initio calculations. Bull Mater Sci 43, 128 (2020). https://doi.org/10.1007/s12034-020-02095-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02095-6

Keywords

Navigation