Skip to main content
Log in

A validation procedure to identify joint friction, reductor self-locking and gear backlash parameters

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The paper presents a new method for the identification of joint friction, reductor self-locking and gear backlash parameters. The method was developed using an existing hexapod robot. During the process, the motor driving currents given by the model and measured on the real device were observed and compared. Initially, the current curves showed specific differences. After the analysis of these deviations, their causes were identified as joint friction, reductor self-locking and gear backlash. The parameters of these phenomena were determined using swarm optimization. As a result of this process, a validated model was obtained. The mentioned mechanical properties were identified using a step-by-step method, in which one property aided in the discovery of another. The robot model was created in a MATLAB/Simulink environment, using the Simscape Multibody Toolbox.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liang, J., Fillmore, S., Ma, O.: An extended bristle friction force model with experimental validation. Mech. Mach. Theory 56, 123–137 (2012)

    Article  Google Scholar 

  2. Piatkowski, T., Wolski, M.: Analysis of selected friction properties with the Froude pendulum as an example. Mech. Mach. Theory 119, 37–50 (2018)

    Article  Google Scholar 

  3. Diez-Ibarbia, A., Fernandez-del-Rincon, A., de-Juan, A., Iglesias, M., Garcia, P., Viadero, F.: Frictional power losses on spur gears with tip reliefs. The friction coefficient role. Mech. Mach. Theory 121, 15–27 (2018)

    Article  Google Scholar 

  4. Siyu, C., Jinyuan, T., Caiwang, L., Qibo, W.: Nonlinear dynamic characteristics of geared rotor bearing systems with dynamic backlash and friction. Mech. Mach. Theory 46, 466–478 (2011)

    Article  Google Scholar 

  5. Erkaya, S.: Trajectory optimization of a walking mechanism having revolute joints with clearance using ANFIS approach. Nonlinear Dyn. 71, 75–91 (2013). https://doi.org/10.1007/s11071-012-0642-5

    Article  MathSciNet  Google Scholar 

  6. Altuzarra, O., Aginaga, J., Hernández, A., Zabalza, I.: Workspace analysis of positioning discontinuities due to clearances in parallel manipulators. Mech. Mach. Theory 46, 577–592 (2011)

    Article  Google Scholar 

  7. Mazzini, F., Dubowsky, S.: Experimental validation of the tactile exploration by a manipulator with joint backlash. J. Mech. Robot. 4, 011009-1 (2012)

    Article  Google Scholar 

  8. Ruderman, M., Hoffmann, F., Bertram, T.: Modeling and identification of elastic robot joints with hysteresis and backlash. IEEE Trans. Ind. Electron. 56(10), 3840–3847 (2009)

    Article  Google Scholar 

  9. Aphiratsakun, N., Parnichkun, M.: Balancing control of AIT leg exoskeleton using ZMP based FLC. Int. J. Adv. Robot. Syst. 6(4), 319–328 (2009). ISSN 1729-8806

    Article  Google Scholar 

  10. Slamani, M., Bonev, I.: Characterization and experimental evaluation of gear transmission errors in an industrial robot. Ind. Robot 40(5), 441–449 (2013). https://doi.org/10.1108/IR-07-2012-387

    Article  Google Scholar 

  11. He, S., Jia, Q., Chen, G., Sun, H.: Modeling and dynamic analysis of planetary gear transmission joints with backlash. Int. J. Control Autom. 8(2), 153–162 (2015). https://doi.org/10.14257/ijca.2015.8.2.16

    Article  Google Scholar 

  12. Cobano, J.A., Estremera, J., de Santos, P.G.: Accurate tracking of legged robots on natural terrain. Auton. Robots 28, 231–244 (2010). https://doi.org/10.1007/s10514-009-9165-4

    Article  Google Scholar 

  13. Gupta, A., O’Malley, M.K.: Design of a haptic arm exoskeleton for training and rehabilitation. IEEE/ASME Trans. Mechatron. 11(3), 280–289 (2006)

    Article  Google Scholar 

  14. Yue, H., Wei, Z., Chen, Q., Zhang, X.: Adaptive fuzzy dynamic surface tracking control for a class of nonlinear systems with unknown distributed time delays and backlash-like hysteresis. Int. J. Adv. Robot. Syst. (2017). https://doi.org/10.1177/1729881417733886

    Article  Google Scholar 

  15. Brogliato, B.: Feedback control of multibody systems with joint clearance and dynamic backlash: a tutorial. Multibody Syst. Dyn. 42, 283–315 (2018). https://doi.org/10.1007/s11044-017-9585-4

    Article  MathSciNet  MATH  Google Scholar 

  16. Leonesio, M., Bianchi, G.: Self-locking analysis in closed kinematic chains. Mech. Mach. Theory 44, 2038–2052 (2009)

    Article  Google Scholar 

  17. Kecskés, I., Burkus, E., Bazsó, F., Odry, P.: Model validation of a hexapod walker robot. Robotica 35, 419–462 (2017)

    Article  Google Scholar 

  18. Shkolnik, A., Levashov, M., Manchester, I.R., Tedrake, R.: Bounding on rough terrain with the LittleDog robot. Int. J. Robot. Res. 30, 192–215 (2011)

    Article  Google Scholar 

  19. Asif, U., Iqbal, J.: An approach to stable walking over uneven terrain using a reflex based adaptive gait. J. Control Sci. Eng. 2011. https://doi.org/10.1155/2011/783741 (2011)

    Article  MathSciNet  Google Scholar 

  20. Grzelczyk, D., Stanćzyk, B., Awrejcewicz, J.: Kinematics, dynamics and power consumption analysis of the hexapod robot during walking with tripod gait. Int. J. Struct. Stab. Dyn. 17, 1740010. https://doi.org/10.1142/S0219455417400107 (2017)

    Article  Google Scholar 

  21. Popov, V.L.: Contact Mechanics and Friction. Physical Principles and Applications. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-10803-7

    Book  MATH  Google Scholar 

  22. Olsson, H., Åström, K.J., Canudas de Wit, C., Gäfvert, M., Lischinsky, P.: Friction models and friction compensation. Eur. J. Control 4, 176–195 (1998)

    Article  Google Scholar 

  23. Mostaghel, N., Davis, T.: Representations of Coulomb friction for dynamic analysis. Earthq. Eng. Struct. Dyn. 26, 541–548 (1997)

    Article  Google Scholar 

  24. Dekker, M.H.P.: Mechanical design of a humanoid robot’s lower body, improved walking and posture dynamics, Masters’ thesis. Eindhoven University of Technology, Eindhoven (2010)

  25. Kecskés, I., Odry, P.: Optimization of PI and fuzzy-PI controllers on simulation model of Szabad(ka)-II walking robot. Int. J. Adv. Robot. Syst. 11, 186 (2014)

    Article  Google Scholar 

  26. The MathWorks, Inc.: Rotational Friction. www.mathworks.com/help/physmod/simscape/ref/rotationalfriction.html. Accessed 11 Feb 2019 (2020)

  27. David, R.S., Castillo, J.M.D.: Conditions for self-locking in planetary gear trains. J. Mech. Des. 129, 960–968 (2007)

    Article  Google Scholar 

  28. The MathWorks, Inc.: Rotational Hard Stop. www.mathworks.com/help/physmod/simscape/ref/rotationalhardstop.html. Accessed 11 Feb 2019 (2020)

  29. The MathWorks, Inc.: Torsional Spring–Damper. www.mathworks.com/help/physmod/sdl/ref/torsionalspringdamper.html. Accessed 11 Feb 2019 (2020)

  30. Burkus, E., Bessenyei, S., Odry, A., Kecskés, I., Odry, P.: Test bench built for the identification of the Szabad(ka)-II hexapod robot leg prototypes. In: International Symposium on Intelligent Systems and Informatics (SISY) (2016)

Download references

Acknowledgements

The realization of the project, which includes building the new Hexapod robot, is sponsored by FAULHABER Motors Hungaria Ltd. and AppL-DSP Ltd., for which we are very grateful. This work is supported by the EFOP-3.6.1-16-2016-00003 project. The project is co-financed by the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ervin Burkus.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkus, E., Awrejcewicz, J. & Odry, P. A validation procedure to identify joint friction, reductor self-locking and gear backlash parameters. Arch Appl Mech 90, 1625–1641 (2020). https://doi.org/10.1007/s00419-020-01687-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01687-2

Keywords

Navigation