Skip to main content
Log in

Smac mimetics can provoke lytic cell death that is neither apoptotic nor necroptotic

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Smac mimetics, or IAP antagonists, are a class of drugs currently being evaluated as anti-cancer therapeutics. These agents antagonize IAP proteins, including cIAP1/2 and XIAP, to induce cell death via apoptotic or, upon caspase-8 deficiency, necroptotic cell death pathways. Many cancer cells are unresponsive to Smac mimetic treatment as a single agent but can be sensitized to killing in the presence of the cytokine TNFα, provided either exogenously or via autocrine production. We found that high concentrations of a subset of Smac mimetics could provoke death in cells that did not produce TNFα, despite sensitization at lower concentrations by TNFα. The ability of these drugs to kill did not correlate with valency. These cells remained responsive to the lethal effects of Smac mimetics at high concentrations despite genetic or pharmacological impairments in apoptotic, necroptotic, pyroptotic, autophagic and ferroptotic cell death pathways. Analysis of dying cells revealed necrotic morphology, which was accompanied by the release of lactate dehydrogenase and cell membrane rupture without prior phosphatidylserine exposure implying cell lysis, which occurred over a several hours. Our study reveals that cells incapable of autocrine TNFα production are sensitive to some Smac mimetic compounds when used at high concentrations, and this exposure elicits a lytic cell death phenotype that occurs via a mechanism not requiring apoptotic caspases or necroptotic effectors RIPK3 or MLKL. These data reveal the possibility that non-canonical cell death pathways can be triggered by these drugs when applied at high concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Augello C, Caruso L, Maggioni M, Donadon M, Montorsi M, Santambrogio R, Torzilli G, Vaira V, Pellegrini C, Roncalli M, Coggi G, Bosari S (2009) Inhibitors of apoptosis proteins (IAPs) expression and their prognostic significance in hepatocellular carcinoma. BMC Cancer 9:125. https://doi.org/10.1186/1471-2407-9-125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pluta P, Jeziorski A, Cebula-Obrzut AP, Wierzbowska A, Piekarski J, Smolewski P (2015) Expression of IAP family proteins and its clinical importance in breast cancer patients. Neoplasma 62(4):666–673. https://doi.org/10.4149/neo_2015_080

    Article  CAS  PubMed  Google Scholar 

  3. Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S, Scudiero DA, Tudor G, Qui YH, Monks A, Andreeff M, Reed JC (2000) Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 6(5):1796–1803

    CAS  PubMed  Google Scholar 

  4. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67

    Article  PubMed  PubMed Central  Google Scholar 

  5. Eckelman BP, Salvesen GS (2006) The human anti-apoptotic proteins cIAP1 and cIAP2 bind but do not inhibit caspases. J Biol Chem 281(6):3254–3260

    Article  CAS  PubMed  Google Scholar 

  6. Silke J, Vince J (2017) IAPs and cell death. Curr Top Microbiol Immunol 403:95–117. https://doi.org/10.1007/82_2016_507

    Article  CAS  PubMed  Google Scholar 

  7. Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42

    Article  CAS  PubMed  Google Scholar 

  8. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by bnding to and antagonizing IAP proteins. Cell 102:43–53

    Article  CAS  PubMed  Google Scholar 

  9. Fulda S (2017) Smac mimetics to therapeutically target IAP proteins in cancer. Int Rev Cell Mol Biol 330:157–169. https://doi.org/10.1016/bs.ircmb.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  10. Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517(7534):311–320. https://doi.org/10.1038/nature14191

    Article  CAS  PubMed  Google Scholar 

  11. Schilling R, Geserick P, Leverkus M (2014) Characterization of the ripoptosome and its components: implications for anti-inflammatory and cancer therapy. Methods Enzymol 545:83–102. https://doi.org/10.1016/B978-0-12-801430-1.00004-4

    Article  CAS  PubMed  Google Scholar 

  12. Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30(6):689–700. https://doi.org/10.1016/j.molcel.2008.05.014

    Article  CAS  PubMed  Google Scholar 

  13. Petrie EJ, Czabotar PE, Murphy JM (2018) The structural basis of necroptotic cell death signaling. Trends Biochem Sci 44(1):53–63. https://doi.org/10.1016/j.tibs.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  14. Rathore R, McCallum JE, Varghese E, Florea A-M, Büsselberg D (2017) Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs). Apoptosis 22(7):898–919. https://doi.org/10.1007/s10495-017-1375-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Allensworth JL, Sauer SJ, Lyerly HK, Morse MA, Devi GR (2013) Smac mimetic Birinapant induces apoptosis and enhances TRAIL potency in inflammatory breast cancer cells in an IAP-dependent and TNF-alpha-independent mechanism. Breast Cancer Res Treat 137(2):359–371. https://doi.org/10.1007/s10549-012-2352-6

    Article  CAS  PubMed  Google Scholar 

  16. Infante JR, Dees EC, Olszanski AJ, Dhuria SV, Sen S, Cameron S, Cohen RB (2014) Phase I dose-escalation study of LCL161, an oral inhibitor of apoptosis proteins inhibitor, in patients with advanced solid tumors. J Clin Oncol 32(28):3103–3110

    Article  CAS  PubMed  Google Scholar 

  17. Houghton PJ, Kang MH, Reynolds CP, Morton CL, Kolb EA, Gorlick R, Keir ST, Carol H, Lock R, Maris JM, Billups CA, Smith MA (2011) Initial testing (Stage 1) of LCL161, a SMAC mimetic, by the pediatric preclinical testing program. Pediatr Blood Cancer 58(4):636–639. https://doi.org/10.1002/pbc.23167

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cai Q, Sun H, Peng Y, Lu J, Nikolovska-Coleska Z, McEachern D, Liu L, Qiu S, Yang CY, Miller R, Yi H, Zhang T, Sun D, Kang S, Guo M, Leopold L, Yang D, Wang S (2011) A potent and orally active antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis proteins (IAPs) in clinical development for cancer treatment. J Med Chem 54(8):2714–2726. https://doi.org/10.1021/jm101505d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Condon SM, Mitsuuchi Y, Deng Y, LaPorte MG, Rippin SR, Haimowitz T, Alexander MD, Kumar PT, Hendi MS, Lee YH, Benetatos CA, Yu G, Kapoor GS, Neiman E, Seipel ME, Burns JM, Graham MA, McKinlay MA, Li X, Wang J, Shi Y, Feltham R, Bettjeman B, Cumming MH, Vince JE, Khan N, Silke J, Day CL, Chunduru SK (2014) Birinapant, a smac-mimetic with improved tolerability for the treatment of solid tumors and hematological malignancies. J Med Chem 57(9):3666–3677

    Article  CAS  PubMed  Google Scholar 

  20. Flygare JA, Beresini M, Budha N, Chan H, Chan IT, Cheeti S, Cohen F, Deshayes K, Doerner K, Eckhardt SG, Elliott LO, Feng B, Franklin MC, Reisner SF, Gazzard L, Halladay J, Hymowitz SG, La H, LoRusso P, Maurer B, Murray L, Plise E, Quan C, Stephan JP, Young SG, Tom J, Tsui V, Um J, Varfolomeev E, Vucic D, Wagner AJ, Wallweber HJ, Wang L, Ware J, Wen Z, Wong H, Wong JM, Wong M, Wong S, Yu R, Zobel K, Fairbrother WJ (2012) Discovery of a potent small-molecule antagonist of inhibitor of apoptosis (IAP) proteins and clinical candidate for the treatment of cancer (GDC-0152). J Med Chem 55(9):4101–4113. https://doi.org/10.1021/jm300060k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baggio C, Gambini L, Udompholkul P, Salem AF, Aronson A, Dona A, Troadec E, Pichiorri F, Pellecchia M (2018) Design of potent pan-IAP and Lys-covalent XIAP selective inhibitors using a thermodynamics driven approach. J Med Chem 61(14):6350–6363. https://doi.org/10.1021/acs.jmedchem.8b00810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P, Zobel K, Dynek JN, Elliott LO, Wallweber HJ, Flygare JA, Fairbrother WJ, Deshayes K, Dixit VM, Vucic D (2007) IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 131(4):669–681

    Article  CAS  PubMed  Google Scholar 

  23. Lu J, Bai L, Sun H, Nikolovska-Coleska Z, McEachern D, Qiu S, Miller RS, Yi H, Shangary S, Sun Y, Meagher JL, Stuckey JA, Wang S (2008) SM-164: a novel, bivalent Smac mimetic that induces apoptosis and tumor regression by concurrent removal of the blockade of cIAP-1/2 and XIAP. Cancer Res 68(22):9384–9393. https://doi.org/10.1158/0008-5472.CAN-08-2655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dougan SK, Dougan M (2018) Regulation of innate and adaptive antitumor immunity by IAP antagonists. Immunotherapy 10(9):787–796. https://doi.org/10.2217/imt-2017-0185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Knights AJ, Fucikova J, Pasam A, Koernig S, Cebon J (2013) Inhibitor of apoptosis protein (IAP) antagonists demonstrate divergent immunomodulatory properties in human immune subsets with implications for combination therapy. Cancer Immunol Immunother 62(2):321–335. https://doi.org/10.1007/s00262-012-1342-1

    Article  CAS  PubMed  Google Scholar 

  26. Kim DS, Dastidar H, Zhang C, Zemp FJ, Lau K, Ernst M, Rakic A, Sikdar S, Rajwani J, Naumenko V, Balce DR, Ewanchuk BW, Tailor P, Yates RM, Jenne C, Gafuik C, Mahoney DJ (2017) Smac mimetics and oncolytic viruses synergize in driving anticancer T-cell responses through complementary mechanisms. Nat Commun 8(1):344. https://doi.org/10.1038/s41467-017-00324-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dobson CC, Naing T, Beug ST, Faye MD, Chabot J, St-Jean M, Walker DE, LaCasse EC, Stojdl DF, Korneluk RG, Holcik M (2017) Oncolytic virus synergizes with Smac mimetic compounds to induce rhabdomyosarcoma cell death in a syngeneic murine model. Oncotarget 8(2):3495–3508. https://doi.org/10.18632/oncotarget.13849

    Article  PubMed  Google Scholar 

  28. Beug ST, Pichette SJ, St-Jean M, Holbrook J, Walker DE, LaCasse EC, Korneluk RG (2018) Combination of IAP antagonists and TNF-alpha-armed oncolytic viruses induce tumor vascular shutdown and tumor regression. Mol Ther Oncolyt 10:28–39. https://doi.org/10.1016/j.omto.2018.06.002

    Article  CAS  Google Scholar 

  29. Beug ST, Beauregard CE, Healy C, Sanda T, St-Jean M, Chabot J, Walker DE, Mohan A, Earl N, Lun X, Senger DL, Robbins SM, Staeheli P, Forsyth PA, Alain T, LaCasse EC, Korneluk RG (2017) Smac mimetics synergize with immune checkpoint inhibitors to promote tumour immunity against glioblastoma. Nat Commun. https://doi.org/10.1038/ncomms14278

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chesi M, Mirza NN, Garbitt VM, Sharik ME, Dueck AC, Asmann YW, Akhmetzyanova I, Kosiorek HE, Calcinotto A, Riggs DL, Keane N, Ahmann GJ, Morrison KM, Fonseca R, Lacy MQ, Dingli D, Kumar SK, Ailawadhi S, Dispenzieri A, Buadi F, Gertz MA, Reeder CB, Lin Y, Chanan-Khan AA, Stewart AK, Fooksman D, Bergsagel PL (2016) IAP antagonists induce anti-tumor immunity in multiple myeloma. Nat Med 22(12):1411–1420. https://doi.org/10.1038/nm.4229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Amaravadi RK, Schilder RJ, Martin LP, Levin M, Graham MA, Weng DE, Adjei AA (2015) A phase I study of the SMAC-mimetic birinapant in adults with refractory solid tumors or lymphoma. Mol Cancer Ther 14(11):2569–2575. https://doi.org/10.1158/1535-7163.Mct-15-0475

    Article  CAS  PubMed  Google Scholar 

  32. DiPersio JF, Erba HP, Larson RA, Luger SM, Tallman MS, Brill JM, Vuagniaux G, Rouits E, Sorensen JM, Zanna C (2015) Oral Debio1143 (AT406), an antagonist of inhibitor of apoptosis proteins, combined with daunorubicin and cytarabine in patients with poor-risk acute myeloid leukemia–results of a phase I dose-escalation study. Clin Lymphoma Myeloma Leuk 15(7):443–449. https://doi.org/10.1016/j.clml.2015.02.020

    Article  PubMed  PubMed Central  Google Scholar 

  33. Parton M, Bardia A, Kummel S, Estevez LG, Huang C-S, Castan JC, Borrego MR, Telli ML, Lluch A, Lopez R, Beck JT, Ismail-Khan R, Chen S-C, Hurvitz SA, Mayer IA, Atienza RS, Cameron S, Krygowski M, Kim S-B (2015) A phase II, open-label, neoadjuvant, randomized study of LCL161 with paclitaxel in patients with triple-negative breast cancer (TNBC). J Clin Oncol 33(15_suppl):1014–1014. https://doi.org/10.1200/jco.2015.33.15_suppl.1014

    Article  Google Scholar 

  34. Noonan AM, Bunch KP, Chen JQ, Herrmann MA, Lee JM, Kohn EC, O'Sullivan CC, Jordan E, Houston N, Takebe N, Kinders RJ, Cao L, Peer CJ, Figg WD, Annunziata CM (2016) Pharmacodynamic markers and clinical results from the phase 2 study of the SMAC mimetic birinapant in women with relapsed platinum-resistant or -refractory epithelial ovarian cancer. Cancer 122(4):588–597. https://doi.org/10.1002/cncr.29783

    Article  CAS  PubMed  Google Scholar 

  35. Carter BZ, Mak PY, Mak DH, Shi Y, Qiu Y, Bogenberger JM, Mu H, Tibes R, Yao H, Coombes KR, Jacamo RO, McQueen T, Kornblau SM, Andreeff M (2014) Synergistic targeting of AML stem/progenitor cells with IAP antagonist birinapant and demethylating agents. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djt440

    Article  PubMed  PubMed Central  Google Scholar 

  36. Steinhart L, Belz K, Fulda S (2013) Smac mimetic and demethylating agents synergistically trigger cell death in acute myeloid leukemia cells and overcome apoptosis resistance by inducing necroptosis. Cell Death Dis 4:e802. https://doi.org/10.1038/cddis.2013.320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chromik J, Safferthal C, Serve H, Fulda S (2014) Smac mimetic primes apoptosis-resistant acute myeloid leukaemia cells for cytarabine-induced cell death by triggering necroptosis. Cancer Lett 344(1):101–109. https://doi.org/10.1016/j.canlet.2013.10.018

    Article  CAS  PubMed  Google Scholar 

  38. Thibault B, Genre L, Le Naour A, Broca C, Mery E, Vuagniaux G, Delord JP, Wiedemann N, Couderc B (2018) DEBIO 1143, an IAP inhibitor, reverses carboplatin resistance in ovarian cancer cells and triggers apoptotic or necroptotic cell death. Sci Rep 8(1):17862. https://doi.org/10.1038/s41598-018-35860-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shekhar TM, Burvenich IJG, Harris MA, Rigopoulos A, Zanker D, Spurling A, Parker BS, Walkley CR, Scott AM, Hawkins CJ (2019) Smac mimetics LCL161 and GDC-0152 inhibit osteosarcoma growth and metastasis in mice. BMC Cancer 19(1):924. https://doi.org/10.1186/s12885-019-6103-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shekhar TM, Miles MA, Gupte A, Taylor S, Tascone B, Walkley CR, Hawkins CJ (2016) IAP antagonists sensitize murine osteosarcoma cells to killing by TNFalpha. Oncotarget 7(23):33866–33886. https://doi.org/10.18632/oncotarget.8980

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shekhar TM, Green MM, Rayner DM, Miles MA, Cutts SM, Hawkins CJ (2015) Inhibition of Bcl-2 or IAP proteins does not provoke mutations in surviving cells. Mutat Res 777:23–32. https://doi.org/10.1016/j.mrfmmm.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  42. Tchoghandjian A, Jennewein C, Eckhardt I, Rajalingam K, Fulda S (2013) Identification of non-canonical NF-kappaB signaling as a critical mediator of Smac mimetic-stimulated migration and invasion of glioblastoma cells. Cell Death Dis 4:e564. https://doi.org/10.1038/cddis.2013.70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Petersen SL, Wang L, Yalcin-Chin A, Li L, Peyton M, Minna J, Harran P, Wang X (2007) Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12(5):445–456. https://doi.org/10.1016/j.ccr.2007.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU, Benetatos CA, Chunduru SK, Condon SM, McKinlay M, Brink R, Leverkus M, Tergaonkar V, Schneider P, Callus BA, Koentgen F, Vaux DL, Silke J (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131(4):682–693. https://doi.org/10.1016/j.cell.2007.10.037

    Article  CAS  PubMed  Google Scholar 

  45. Miles MA, Hawkins CJ (2018) Mutagenic assessment of chemotherapy and Smac mimetic drugs in cells with defective DNA damage response pathways. Sci Rep 8(1):14421–14421. https://doi.org/10.1038/s41598-018-32517-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. DiPersio JF, Erba HP, Larson RA, Luger SM, Tallman MS, Brill JM, Vuagniaux G, Rouits E, Sorensen JM, Zanna C (2015) Oral Debio1143 (AT406), an antagonist of inhibitor of apoptosis proteins, combined with daunorubicin and cytarabine in patients with poor-risk acute myeloid leukemi—results of a phase I dose-escalation study. Clin Lymphoma Myeloma Leukem 15(7):443–449. https://doi.org/10.1016/j.clml.2015.02.020

    Article  Google Scholar 

  47. Langdon CG, Wiedemann N, Held MA, Mamillapalli R, Iyidogan P, Theodosakis N, Platt JT, Levy F, Vuagniaux G, Wang S, Bosenberg MW, Stern DF (2015) SMAC mimetic Debio 1143 synergizes with taxanes, topoisomerase inhibitors and bromodomain inhibitors to impede growth of lung adenocarcinoma cells. Oncotarget 6(35):37410–37425. https://doi.org/10.18632/oncotarget.6138

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang S, Li G, Zhao Y, Liu G, Wang Y, Ma X, Li D, Wu Y, Lu J (2012) Smac mimetic SM-164 potentiates APO2L/TRAIL- and doxorubicin-mediated anticancer activity in human hepatocellular carcinoma cells. PLoS ONE 7(12):e51461–e51461. https://doi.org/10.1371/journal.pone.0051461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tchoghandjian A, Soubéran A, Tabouret E, Colin C, Denicolaï E, Jiguet-Jiglaire C, El-Battari A, Villard C, Baeza-Kallee N, Figarella-Branger D (2016) Inhibitor of apoptosis protein expression in glioblastomas and their in vitro and in vivo targeting by SMAC mimetic GDC-0152. Cell Death Dis 7(8):e2325–e2325. https://doi.org/10.1038/cddis.2016.214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tian A, Wilson GS, Lie S, Wu G, Hu Z, Hebbard L, Duan W, George J, Qiao L (2014) Synergistic effects of IAP inhibitor LCL161 and paclitaxel on hepatocellular carcinoma cells. Cancer Lett 351(2):232–241. https://doi.org/10.1016/j.canlet.2014.06.006

    Article  CAS  PubMed  Google Scholar 

  51. Yang C, Wang H, Zhang B, Chen Y, Zhang Y, Sun X, Xiao G, Nan K, Ren H, Qin S (2016) LCL161 increases paclitaxel-induced apoptosis by degrading cIAP1 and cIAP2 in NSCLC. J Exp Clin Cancer Res 35(1):158–158. https://doi.org/10.1186/s13046-016-0435-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kamata E, Kawamoto T, Ueha T, Hara H, Fukase N, Minoda M, Morishita M, Takemori T, Fujiwara S, Nishida K, Kuroda R, Kurosaka M, Akisue T (2017) Synergistic effects of a Smac mimetic with doxorubicin against human osteosarcoma. Anticancer Res 37(11):6097–6106

    CAS  PubMed  Google Scholar 

  53. Bagnjuk K, Kast VJ, Tiefenbacher A, Kaseder M, Yanase T, Burges A, Kunz L, Mayr D, Mayerhofer A (2019) Inhibitor of apoptosis proteins are potential targets for treatment of granulosa cell tumors—implications from studies in KGN. J Ovarian Res 12(1):76–76. https://doi.org/10.1186/s13048-019-0549-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tanzer MC, Matti I, Hildebrand JM, Young SN, Wardak A, Tripaydonis A, Petrie EJ, Mildenhall AL, Vaux DL, Vince JE, Czabotar PE, Silke J, Murphy JM (2016) Evolutionary divergence of the necroptosis effector MLKL. Cell Death Differ 23(7):1185–1197. https://doi.org/10.1038/cdd.2015.169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McCabe KE, Bacos K, Lu D, Delaney JR, Axelrod J, Potter MD, Vamos M, Wong V, Cosford NDP, Xiang R, Stupack DG (2014) Triggering necroptosis in cisplatin and IAP antagonist-resistant ovarian carcinoma. Cell Death Dis 5(10):e1496–e1496. https://doi.org/10.1038/cddis.2014.448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tummers B, Green DR (2017) Caspase-8: regulating life and death. Immunol Rev 277(1):76–89. https://doi.org/10.1111/imr.12541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bloomer DT, Kitevska-Ilioski T, Pantaki-Eimany D, Ji Y, Miles MA, Heras B, Hawkins CJ (2019) CrmA orthologs from diverse poxviruses potently inhibit caspases-1 and -8, yet cleavage site mutagenesis frequently produces caspase-1-specific variants. Biochem J. https://doi.org/10.1042/bcj20190202

    Article  PubMed  Google Scholar 

  58. Zhou Q, Snipas S, Orth K, Muzio M, Dixit VM, Salvesen GS (1997) Target protease specificity of the viral serpin CrmA—analysis of five caspases. J Biol Chem 272(12):7797–7800

    Article  CAS  PubMed  Google Scholar 

  59. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665. https://doi.org/10.1038/nature15514

    Article  CAS  PubMed  Google Scholar 

  60. Gaither A, Porter D, Yao Y, Borawski J, Yang G, Donovan J, Sage D, Slisz J, Tran M, Straub C, Ramsey T, Iourgenko V, Huang A, Chen Y, Schlegel R, Labow M, Fawell S, Sellers WR, Zawel L (2007) A Smac mimetic rescue screen reveals roles for inhibitor of apoptosis proteins in tumor necrosis factor-alpha signaling. Can Res 67(24):11493–11498

    Article  CAS  Google Scholar 

  61. Gradzka S, Thomas OS, Kretz O, Haimovici A, Vasilikos L, Wong WW-L, Häcker G, Gentle IE (2018) Inhibitor of apoptosis proteins are required for effective fusion of autophagosomes with lysosomes. Cell Death Dis 9(5):529–529. https://doi.org/10.1038/s41419-018-0508-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ding R, Wang X, Chen W, Li Z, Wei AL, Wang QB, Nie AH, Wang LL (2019) WX20120108, a novel IAP antagonist, induces tumor cell autophagy via activating ROS-FOXO pathway. Acta Pharmacol Sin. https://doi.org/10.1038/s41401-019-0253-5

    Article  PubMed  PubMed Central  Google Scholar 

  63. Li B-X, Wang H-B, Qiu M-Z, Luo Q-Y, Yi H-J, Yan X-L, Pan W-T, Yuan L-P, Zhang Y-X, Xu J-H, Zhang L, Yang D-J (2018) Novel smac mimetic APG-1387 elicits ovarian cancer cell killing through TNF-alpha, ripoptosome and autophagy mediated cell death pathway. J Exp Clin Cancer Res 37(1):53. https://doi.org/10.1186/s13046-018-0703-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Véquaud E, Séveno C, Loussouarn D, Engelhart L, Campone M, Juin P, Barillé-Nion S (2015) YM155 potently triggers cell death in breast cancer cells through an autophagy-NF-kB network. Oncotarget 6:15

    Article  Google Scholar 

  65. Peiqi L, Rong H, Hongming D, Zhuogang L, Wei J, Miao M (2018) GDC-0152-induced autophagy promotes apoptosis in HL-60 cells. Mol Cell Biochem 445(1):135–143. https://doi.org/10.1007/s11010-017-3259-7

    Article  CAS  PubMed  Google Scholar 

  66. Tanida I, Ueno T, Kominami E (2008) LC3 and autophagy. Methods Mol Biol (Clifton, NJ) 445:77–88. https://doi.org/10.1007/978-1-59745-157-4_4

    Article  CAS  Google Scholar 

  67. Mauvezin C, Neufeld TP (2015) Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy 11(8):1437–1438. https://doi.org/10.1080/15548627.2015.1066957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schenk B, Fulda S (2015) Reactive oxygen species regulate Smac mimetic/TNFalpha-induced necroptotic signaling and cell death. Oncogene 34(47):5796–5806. https://doi.org/10.1038/onc.2015.35

    Article  CAS  PubMed  Google Scholar 

  69. Dachert J, Schoeneberger H, Rohde K, Fulda S (2016) RSL3 and Erastin differentially regulate redox signaling to promote Smac mimetic-induced cell death. Oncotarget 7(39):63779–63792. https://doi.org/10.18632/oncotarget.11687

    Article  PubMed  PubMed Central  Google Scholar 

  70. Florean C, Song S, Dicato M, Diederich M (2019) Redox biology of regulated cell death in cancer: a focus on necroptosis and ferroptosis. Free Radical Biol Med 134:177–189. https://doi.org/10.1016/j.freeradbiomed.2019.01.008

    Article  CAS  Google Scholar 

  71. Haß C, Belz K, Schoeneberger H, Fulda S (2016) Sensitization of acute lymphoblastic leukemia cells for LCL161-induced cell death by targeting redox homeostasis. Biochem Pharmacol 105:14–22. https://doi.org/10.1016/j.bcp.2016.01.004

    Article  CAS  PubMed  Google Scholar 

  72. Hagenbuchner J, Oberacher H, Arnhard K, Kiechl-Kohlendorfer U, Ausserlechner MJ (2019) Modulation of respiration and mitochondrial dynamics by SMAC-mimetics for combination therapy in chemoresistant cancer. Theranostics 9(17):4909–4922. https://doi.org/10.7150/thno.33758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Miotto G, Rossetto M, Di Paolo ML, Orian L, Venerando R, Roveri A, Vučković A-M, Bosello Travain V, Zaccarin M, Zennaro L, Maiorino M, Toppo S, Ursini F, Cozza G (2020) Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol 28:101328. https://doi.org/10.1016/j.redox.2019.101328

    Article  CAS  PubMed  Google Scholar 

  75. Kerksick C, Willoughby D (2005) The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. J Int Soc Sports Nutr 2(2):38–44. https://doi.org/10.1186/1550-2783-2-2-38

    Article  PubMed  PubMed Central  Google Scholar 

  76. Song Z, Yao X, Wu M (2003) Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during taxol-induced apoptosis. J Biol Chem 278(25):23130–23140. https://doi.org/10.1074/jbc.M300957200

    Article  CAS  PubMed  Google Scholar 

  77. Rauch A, Hennig D, Schafer C, Wirth M, Marx C, Heinzel T, Schneider G (1845) Kramer OH (2014) Survivin and YM155: how faithful is the liaison? Biochem Biophys Acta 2:202–220. https://doi.org/10.1016/j.bbcan.2014.01.003

    Article  CAS  Google Scholar 

  78. Falkenhorst J, Grunewald S, Mühlenberg T, Marino-Enriquez A, Reis A-C, Corless C, Heinrich M, Treckmann J, Podleska LE, Schuler M, Fletcher JA, Bauer S (2016) Inhibitor of apoptosis proteins (IAPs) are commonly dysregulated in GIST and can be pharmacologically targeted to enhance the pro-apoptotic activity of imatinib. Oncotarget 7(27):41390–41403. https://doi.org/10.18632/oncotarget.9159

    Article  PubMed  PubMed Central  Google Scholar 

  79. Frank D, Vaux DL, Murphy JM, Vince JE, Lindqvist LM (2019) Activated MLKL attenuates autophagy following its translocation to intracellular membranes. J Cell Sci. https://doi.org/10.1242/jcs.220996

    Article  PubMed  Google Scholar 

  80. Denton D, Kumar S (2019) Autophagy-dependent cell death. Cell Death Differ 26(4):605–616. https://doi.org/10.1038/s41418-018-0252-y

    Article  CAS  PubMed  Google Scholar 

  81. Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D (2019) Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2019.03.002

    Article  PubMed  Google Scholar 

  82. Dächert J, Schoeneberger H, Rohde K, Fulda S (2016) RSL3 and Erastin differentially regulate redox signaling to promote Smac mimetic-induced cell death. Oncotarget 7(39):63779–63792. https://doi.org/10.18632/oncotarget.11687

    Article  PubMed  PubMed Central  Google Scholar 

  83. Vince JE, Wong WW, Gentle I, Lawlor KE, Allam R, O'Reilly L, Mason K, Gross O, Ma S, Guarda G, Anderton H, Castillo R, Hacker G, Silke J, Tschopp J (2012) Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 36(2):215–227. https://doi.org/10.1016/j.immuni.2012.01.012

    Article  CAS  PubMed  Google Scholar 

  84. Munoz D, Brucoli M, Zecchini S, Sandoval-Hernandez A, Arboleda G, Lopez-Vallejo F, Delgado W, Giovarelli M, Coazzoli M, Catalani E, De Palma C, Perrotta C, Cuca L, Clementi E, Cervia D (2019) XIAP as a target of new small organic natural molecules inducing human cancer cell death. Cancers. https://doi.org/10.3390/cancers11091336

    Article  PubMed  PubMed Central  Google Scholar 

  85. Burgener SS, Leborgne NGF, Snipas SJ, Salvesen GS, Bird PI, Benarafa C (2019) Cathepsin G inhibition by serpinb1 and serpinb6 prevents programmed necrosis in neutrophils and monocytes and reduces GSDMD-driven inflammation. Cell Rep 27(12):3646–3656.e3645. https://doi.org/10.1016/j.celrep.2019.05.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Laforge M, Silvestre R, Rodrigues V, Garibal J, Campillo-Gimenez L, Mouhamad S, Monceaux V, Cumont MC, Rabezanahary H, Pruvost A, Cordeiro-da-Silva A, Hurtrel B, Silvestri G, Senik A, Estaquier J (2018) The anti-caspase inhibitor Q-VD-OPH prevents AIDS disease progression in SIV-infected rhesus macaques. J Clin Investig 128(4):1627–1640. https://doi.org/10.1172/jci95127

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lee DW, Faubel S, Edelstein CL (2015) A pan caspase inhibitor decreases caspase-1, IL-1alpha and IL-1beta, and protects against necrosis of cisplatin-treated freshly isolated proximal tubules. Ren Fail 37(1):144–150. https://doi.org/10.3109/0886022x.2014.970194

    Article  CAS  PubMed  Google Scholar 

  88. Sollberger G, Strittmatter GE, Garstkiewicz M, Sand J, Beer HD (2014) Caspase-1: the inflammasome and beyond. Innate immunity 20(2):115–125. https://doi.org/10.1177/1753425913484374

    Article  CAS  PubMed  Google Scholar 

  89. Poon IK, Baxter AA, Lay FT, Mills GD, Adda CG, Payne JA, Phan TK, Ryan GF, White JA, Veneer PK, van der Weerden NL, Anderson MA, Kvansakul M, Hulett MD (2014) Phosphoinositide-mediated oligomerization of a defensin induces cell lysis. eLife. https://doi.org/10.7554/eLife.01808

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kessel D (2019) Apoptosis, paraptosis and autophagy: death and survival pathways associated with photodynamic therapy. Photochem Photobiol 95(1):119–125. https://doi.org/10.1111/php.12952

    Article  CAS  PubMed  Google Scholar 

  91. Miles MA, Hawkins CJ (2017) Executioner caspases and CAD are essential for mutagenesis induced by TRAIL or vincristine. Cell Death Dis 8(10):e3062. https://doi.org/10.1038/cddis.2017.454

    Article  PubMed  PubMed Central  Google Scholar 

  92. Aubrey BJ, Kelly GL, Kueh AJ, Brennan MS, O'Connor L, Milla L, Wilcox S, Tai L, Strasser A, Herold MJ (2015) An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. Cell Rep 10(8):1422–1432

    Article  CAS  PubMed  Google Scholar 

  93. Hawkins CJ, Uren AG, Hacker G, Medcalf RL, Vaux DL (1996) Inhibition of interleukin 1-beta-converting enzyme-mediated apoptosis of mammalian cells by baculovirus IAP. Proc Natl Acad Sci USA 93(24):13786–13790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ashley DM, Riffkin CD, Lovric MM, Mikeska T, Dobrovic A, Maxwell JA, Friedman HS, Drummond KJ, Kaye AH, Gan HK, Johns TG, Hawkins CJ (2008) In vitro sensitivity testing of minimally passaged and uncultured gliomas with TRAIL and/or chemotherapy drugs. Br J Cancer 99(2):294–304. https://doi.org/10.1038/sj.bjc.6604459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank James Murphy for cell lines and the MLKL antibody, Marco Herold and Hamsa Puthalakath for reagents and assistance with CRISPR gene editing, Suresh Mathivanan for the LC3B antibody and bafilomycin A1 drug, and the LIMS Bioimaging Platform. This study was funded by a Cancer Council Victoria Postdoctoral Fellowship to M.A.M., a grant from The Kids’ Cancer Project and a Grant-in-Aid from the Cancer Council Victoria awarded to C.J.H.

Author information

Authors and Affiliations

Authors

Contributions

MAM and CJH devised the study and wrote the manuscript text. MAM and SC performed the experiments, AAB and IKHP assisted with planning experiments, MAM analyzed the data and prepared the figures.

Corresponding author

Correspondence to Mark A. Miles.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 3085 kb)

Supplementary file2 (TIF 2939 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miles, M.A., Caruso, S., Baxter, A.A. et al. Smac mimetics can provoke lytic cell death that is neither apoptotic nor necroptotic. Apoptosis 25, 500–518 (2020). https://doi.org/10.1007/s10495-020-01610-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-020-01610-8

Keywords

Navigation