Skip to main content

Advertisement

Log in

EGFR Targeted Paclitaxel and Piperine Co-loaded Liposomes for the Treatment of Triple Negative Breast Cancer

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

A Correction to this article was published on 27 July 2020

This article has been updated

Abstract

Triple-negative breast (TNBC) cancer that is upregulated with epidermal growth factor receptor (EGFR), and devoid of both the hormonal receptors and epidermal growth factor receptor 2 (HER 2), has led to a concept of treating TNBC with EGFR-targeted therapeutics. The combination of paclitaxel (PTX) and piperine (PIP) may improve the bioavailability of paclitaxel for cancer therapy. TPGS (vit E-PEG 1000-succinate)-coated liposomes were prepared with PTX alone or in combination with PIP, and either with (targeted) or without (non-targeted) cetuximab (CTX) conjugation. The Bradford assay indicated that 75% of CTX has been conjugated on the liposomes. The size and percent encapsulation of PTX&PIP co-loaded liposomes were found to be in the range of 204 to 218 nm and 31–73%, respectively. The drug release rate was found to be higher at pH 5.5 in comparison with release at pH 6.4 and pH 7.4. Cellular uptake and toxicity studies on MDA-MB-231 cells showed that PTX&PIP co-loaded targeted liposomes have demonstrated superior uptake and cytotoxicity than their non-targeted counterparts. The IC50 values of both of the liposomal formulations were found to be significantly higher than PTX control. Indeed, combining PIP with PTX control has improved the cytotoxicity of PTX control, which proved the synergistic anticancer effect of PIP. Lyophilized liposomes showed an excellent stability profile with the size range between 189 and 210 nm. Plasma stability study revealed a slight increase in the particle size due to the adsorption of plasma proteins on the surface of liposomes. The long-term stability study also indicated that liposomes were stable at 4°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 27 July 2020

    As the authors were working on similar projects on liposomes at the same time, the 3D figures of Fig. 3 bi and Fig. 3 bii were inadvertently misplaced.

References

  1. Cancer genome atlas network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61-71. https://doi.org/10.1038/nature11412.Epub.

  2. Hessel H, Poignee-Heger M, Lohmann S, et al. Subtyping of triple negative breast carcinoma on the basis of RTK expression. J Cancer. 2018;9(15):2589-602. https://doi.org/10.7150/jca.23023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jam S, Abdollahi A, Zand S, et al. Androgen receptor expression in triple-negative breast cancer. Arch Breast Cancer. 2019;31:90-4. https://doi.org/10.32768/abc.20196292-95.

    Article  Google Scholar 

  4. Vojtek M, Marques MP, Ferreira IM, Mota-Filipe H, Diniz C. Anticancer activity of palladium-based complexes against triple-negative breast cancer. Drug Discov Today. 2019;24:1044-58. https://doi.org/10.1016/j.drudis.2019.02.012.

    Article  CAS  PubMed  Google Scholar 

  5. Kutty RV, Feng SS. Cetuximab conjugated vitamin E TPGS micelles for targeted delivery of docetaxel for treatment of triple negative breast cancers. Biomaterials. 2013;34(38):10160-71. https://doi.org/10.1016/j.biomaterials.2013.09.043.

    Article  CAS  PubMed  Google Scholar 

  6. Mehata AK, Bharti S, Singh P, et al. Trastuzumab decorated TPGS-g-chitosan nanoparticles for targeted breast cancer therapy. Colloids Surf B Biointerfaces. 2019;173:366-77. https://doi.org/10.1016/j.colsurfb.2018.10.007.

    Article  CAS  Google Scholar 

  7. Raju A, Muthu MS, Feng SS. Trastuzumab-conjugated vitamin E TPGS liposomes for sustained and targeted delivery of docetaxel. Expert Opin Drug Deliv. 2013;10(6):747-60. https://doi.org/10.1517/17425247.2013.777425.

    Article  CAS  PubMed  Google Scholar 

  8. Anders C, Carey LA. Understanding and treating triple-negative breast cancer. Oncology. 2008;22(11):1233 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2868264.

    PubMed  Google Scholar 

  9. Anders CK, Carey LA. Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer. 2009;9:S73-81. https://doi.org/10.3816/CBC.2009.s.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schneider BP, Winer EP, Foulkes WD, Garber J, Perou CM, Richardson A, et al. Triple-negative breast cancer: risk factors to potential targets. Clin Cancer Res. 2008;14(24):8010-8. https://doi.org/10.1158/1078-0432.CCR-08-1208.

    Article  CAS  PubMed  Google Scholar 

  11. Jiang YZ, Ma D, Suo C, Shi J, Xue M, Hu X, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies. Cancer Cell. 2019;35(3):428-40. https://doi.org/10.1016/j.ccell.2019.02.001.

    Article  CAS  PubMed  Google Scholar 

  12. Ueno NT, Zhang D. Targeting EGFR in triple negative breast cancer. J Cancer. 2011;2:324-8. https://doi.org/10.7150/jca.2.324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dent R, Hanna WM, Trudeau M, Rawlinson E, Sun P, Narod SA. Pattern of metastatic spread in triple-negative breast cancer. Breast Cancer Res Treat. 2009;115(2):423-8. https://doi.org/10.1007/s10549-008-0086-2.

    Article  PubMed  Google Scholar 

  14. Nofech-Mozes S, Trudeau M, Kahn HK, Dent R, Rawlinson E, Sun P, et al. Patterns of recurrence in the basal and non-basal subtypes of triple-negative breast cancers. Breast Cancer Res Treat. 2009;118(1):131-7. https://doi.org/10.1007/s10549-008-0295-8.

    Article  PubMed  Google Scholar 

  15. Wahba HA, El-Hadaad HA. Current approaches in treatment of triple-negative breast cancer. Cancer Biol Med. 2015;12(2):106-16. https://doi.org/10.7497/j.issn.2095-3941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hu XC, Zhang J, Xu BH, Cai L, Ragaz J, Wang ZH, et al. Cisplatin plus gemcitabine versus paclitaxel plus gemcitabine as first-line therapy for metastatic triple-negative breast cancer (CBCSG006): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 2015;16(4):436-46. https://doi.org/10.1016/S1470-2045(15)70064-1.

    Article  CAS  PubMed  Google Scholar 

  17. Greenshields AL, Doucette CD, Sutton KM, Madera L, Annan H, Yaffe PB, et al. Piperine inhibits the growth and motility of triple-negative breast cancer cells. Cancer Lett. 2015;357(1):129-40. https://doi.org/10.1016/j.canlet.2014.11.017.

    Article  CAS  PubMed  Google Scholar 

  18. Smith ML, Murphy K, Doucette CD, Greenshields AL, Hoskin DW. The dietary flavonoid fisetin causes cell cycle arrest, caspase-dependent apoptosis, and enhanced cytotoxicity of chemotherapeutic drugs in triple-negative breast cancer cells. J Cell Biochem. 2016;117(8):1913-25. https://doi.org/10.1002/jcb.25490.

    Article  CAS  PubMed  Google Scholar 

  19. Alexander A, Qureshi A, Kumari L, et al. Role of herbal bioactives as a potential bioavailability enhancer for active pharmaceutical ingredients. Fitoterapia. 2014;97:1-14. https://doi.org/10.1016/j.fitote.2014.05.005.

    Article  CAS  PubMed  Google Scholar 

  20. Nabekura T, Yamaki T, Ueno K, Kitagawa S. Inhibition of P-glycoprotein and multidrug resistance protein 1 by dietary phytochemicals. Cancer Chemother Pharmacol. 2008;62(5):867-73. https://doi.org/10.1007/s00280-007-0676-4.

    Article  CAS  PubMed  Google Scholar 

  21. Atal CK, Dubey RK, Singh J. Biochemical basis of enhanced drug bioavailability by piperine: evidence that piperine is a potent inhibitor of drug metabolism. J Pharmacol Exp Ther. 1985;232(1):258-62.

    CAS  PubMed  Google Scholar 

  22. Bhardwaj RK, Glaeser H, Becquemont L, Klotz U, Gupta SK, Fromm MF. Fromm, Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J Pharmacol Exp Ther. 2002;302(2):645-50. https://doi.org/10.1124/jpet.102.034728.

    Article  CAS  PubMed  Google Scholar 

  23. Sriwiriyajan S, Tedasen A, Lailerd N, Boonyaphiphat P, Nitiruangjarat A, Deng Y, et al. Anticancer and cancer prevention effects of piperine-free Piper nigrum extract on N-nitrosomethylurea-induced mammary tumorigenesis in rats. Cancer Prev Res (Phila). 2016;9(1):74-82. https://doi.org/10.1158/1940-6207.CAPR-15-0127.

    Article  Google Scholar 

  24. Corkery B, Crown J, Clynes M, O'Donovan N. Epidermal growth factor receptor as a potential therapeutic target in triple-negative breast cancer. Ann Oncol. 2009;20(5):862-7. https://doi.org/10.1093/annonc/mdn710.

    Article  CAS  PubMed  Google Scholar 

  25. Jung KH, Lee JH, Park JW, et al. Targeted therapy of triple negative MDA-MB-468 breast cancer with curcumin delivered by epidermal growth factor-conjugated phospholipid nanoparticles. Oncol Lett. 2018;15(6):9093-100. https://doi.org/10.3892/ol.2018.8471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tomao F, Papa A, Zaccarelli E, et al. Triple-negative breast cancer: new perspectives for targeted therapies. Onco Targets Ther. 2015;8:177-93. https://doi.org/10.2147/OTT.S67673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Agrawal P, Singh RP, Kumari L, et al. TPGS-chitosan cross-linked targeted nanoparticles for effective brain cancer therapy. Mater Sci Eng C Mater Biol Appl. 2017;74:167-76. https://doi.org/10.1016/j.msec.2017.02.008.

    Article  CAS  PubMed  Google Scholar 

  28. Sonali, Singh RP, Singh N, et al. Transferrin liposomes of docetaxel for brain-targeted cancer applications: formulation and brain theranostics. Drug Deliv. 2016;23(4):261-1271. https://doi.org/10.3109/10717544.2016.1162878.

    Article  CAS  Google Scholar 

  29. Singh S, Muthu MS. Preparation and characterization of nanoparticles containing an atypical antipsychotic agent. Nanomedicine (Lond). 2007;2(2):233-40. https://doi.org/10.2217/17435889.2.2.233.

    Article  Google Scholar 

  30. Muthu MS, Avinash Kulkarni S, Liu Y, Feng SS. Development of docetaxel-loaded vitamin E TPGS micelles: formulation optimization, effects on brain cancer cells and biodistribution in rats. Nanomedicine. 2012;7(3):353-64. https://doi.org/10.2217/nnm.11.111.

    Article  CAS  PubMed  Google Scholar 

  31. Muthu MS, Kulkarni SA, Raju A, Feng SS. Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials. 2012;33(12):3494-501. https://doi.org/10.1016/j.biomaterials.2012.01.036.

    Article  CAS  PubMed  Google Scholar 

  32. He Y, Luo L, Liang S, Long M, Xu H. Influence of probe-sonication process on drug entrapment efficiency of liposomes loaded with a hydrophobic drug. Int J Polym Mater Polym. 2019;68(4):193-7. https://doi.org/10.1080/00914037.2018.1434651.

    Article  CAS  Google Scholar 

  33. Wang L. Preparation and in vitro evaluation of an acidic environment-responsive liposome for paclitaxel tumor targeting. Asian J Pharm Sci. 2017;12(5):470-7. https://doi.org/10.1016/j.ajps.2017.05.008.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Soe ZC, Thapa RK, Ou W, Gautam M, Nguyen HT, Jin SG, et al. Folate receptor-mediated celastrol and irinotecan combination delivery using liposomes for effective chemotherapy. Colloids Surf B Biointerfaces. 2018;170:718-28. https://doi.org/10.1016/j.colsurfb.2018.07.013.

    Article  CAS  PubMed  Google Scholar 

  35. Ramadass SK, Anantharaman NV, Subramanian S, Sivasubramanian S, Madhan B. Paclitaxel/Epigallocatechin gallate coloaded liposome: a synergistic delivery to control the invasiveness of MDA-MB-231 breast cancer cells. Colloids Surf B Biointerfaces. 2015;125:65-72. https://doi.org/10.1016/j.colsurfb.2014.11.005.

    Article  CAS  PubMed  Google Scholar 

  36. Ye J, Xia X, Dong W, Hao H, Meng L, Yang Y, et al. Cellular uptake mechanism and comparative evaluation of antineoplastic effects of paclitaxel-cholesterol lipid emulsion on triple-negative and non-triple-negative breast cancer cell lines. Int J Nanomedicine. 2016;11:4125-40. https://doi.org/10.2147/IJN.S113638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jain S, Kumar D, Swarnakar NK, Thanki K. Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel. Biomaterials. 2012;33(28):6758-68. https://doi.org/10.1016/j.biomaterials.2012.05.026.

    Article  CAS  PubMed  Google Scholar 

  38. Banerjee P, Geng T, Mahanty A, Li T, Zong L, Wang B Wang, Integrating the drug, disulfiram into the vitamin E-TPGS-modified PEGylated nanostructured lipid carriers to synergize its repurposing for anti-cancer therapy of solid tumors, Int J Pharm 2019;557:374-389. https://doi.org/10.1016/j.ijpharm.2018.12.051.

  39. Sickmier EA, Kurzeja RJ, Michelsen K, et al. The panitumumab EGFR complex reveals a binding mechanism that overcomes cetuximab induced resistance. PLoS One. 2016;11(9):e0163366. https://doi.org/10.1371/journal.pone.0163366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Seong JS, Yun ME, Park SN. Surfactant-stable and pH-sensitive liposomes coated with N-succinyl-chitosan and chitooligosaccharide for delivery of quercetin. Carbohydr Polym. 2018;1(181):659-667. https://doi.org/10.1016/j.carbpol.2017.11.098.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Indian Institute of Technology- Banaras Hindu University (IIT-BHU), Varanasi, India, for MHRD research scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madaswamy S. Muthu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burande, A.S., Viswanadh, M.K., Jha, A. et al. EGFR Targeted Paclitaxel and Piperine Co-loaded Liposomes for the Treatment of Triple Negative Breast Cancer. AAPS PharmSciTech 21, 151 (2020). https://doi.org/10.1208/s12249-020-01671-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01671-7

KEY WORDS

Navigation