Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses

Abstract

Dendritic cells are powerful antigen-presenting cells that are essential for the priming of T cell responses. In addition to providing T-cell-receptor ligands and co-stimulatory molecules for naive T cell activation and expansion, dendritic cells are thought to also provide signals for the differentiation of CD4+ T cells into effector T cell populations. The mechanisms by which dendritic cells are able to adapt and respond to the great variety of infectious stimuli they are confronted with, and prime an appropriate CD4+ T cell response, are only partly understood. It is known that in the steady-state dendritic cells are highly heterogenous both in phenotype and transcriptional profile, and that this variability is dependent on developmental lineage, maturation stage, and the tissue environment in which dendritic cells are located. Exposure to infectious agents interfaces with this pre-existing heterogeneity by providing ligands for pattern-recognition and toll-like receptors that are variably expressed on different dendritic cell subsets, and elicit production of cytokines and chemokines to support innate cell activation and drive T cell differentiation. Here we review current information on dendritic cell biology, their heterogeneity, and the properties of different dendritic cell subsets. We then consider the signals required for the development of different types of Th immune responses, and the cellular and molecular evidence implicating different subsets of dendritic cells in providing such signals. We outline how dendritic cell subsets tailor their response according to the infectious agent, and how such transcriptional plasticity enables them to drive different types of immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. O’Shea, J. J. & Paul, W. E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098–1102 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Merad, M., Sathe, P., Helft, J., Miller, J. & Mortha, A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31, 563–604 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Patente, T. A., Pelgrom, L. R. & Everts, B. Dendritic cells are what they eat: how their metabolism shapes T helper cell polarization. Curr. Opin. Immunol. 58, 16–23 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Blecher-Gonen, R. et al. Single-cell analysis of diverse pathogen responses defines a molecular roadmap for generating antigen-specific immunity. Cell Syst. 8, 109–121 e106 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Meredith, M. M. et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209, 1153–1165 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Satpathy, A. T. et al. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 209, 1135–1152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guilliams, M. et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14, 571–578 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guilliams, M. et al. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45, 669–684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miller, J. C. et al. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13, 888–899 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ohl, L. et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21, 279–288 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Gerner, M. Y., Kastenmuller, W., Ifrim, I., Kabat, J. & Germain, R. N. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 37, 364–376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vermaelen, K. Y., Carro-Muino, I., Lambrecht, B. N. & Pauwels, R. A. Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes. J. Exp. Med. 193, 51–60 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Granot, T. et al. Dendritic cells display subset and tissue-specific maturation dynamics over human life. Immunity 46, 504–515 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haniffa, M. et al. Human tissues contain CD141(hi) cross-presenting dendritic cells with functional homology to mouse CD103(+) nonlymphoid dendritic cells. Immunity 37, 60–73 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tomura, M. et al. Monitoring cellular movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice. Proc. Natl Acad. Sci. USA 105, 10871–10876 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hayes, A. J. et al. Spatiotemporal modeling of the key migratory events during the initiation of adaptive immunity. Front. Immunol. 10, 598 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tomura, M. et al. Tracking and quantification of dendritic cell migration and antigen trafficking between the skin and lymph nodes. Sci. Rep. 4, 6030 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tamoutounour, S. et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39, 925–938 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Langlet, C. et al. CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization. J. Immunol. 188, 1751–1760 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Tamoutounour, S. et al. CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis. Eur. J. Immunol. 42, 3150–3166 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Min, J. et al. Inflammation induces two types of inflammatory dendritic cells in inflamed lymph nodes. Exp. Mol. Med. 50, e458 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bosteels, C. et al. Inflammatory type 2 cDCs acquire features of cDC1s and macrophages to orchestrate immunity to respiratory virus infection. Immunity (2020). In press. https://doi.org/10.1016/j.immuni.2020.04.005.

  23. Nakano, H. et al. Complement receptor C5aR1/CD88 and dipeptidyl peptidase-4/CD26 define distinct hematopoietic lineages of dendritic cells. J. Immunol. 194, 3808–3819 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schlitzer, A. et al. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat. Immunol. 16, 718–728 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Cabeza-Cabrerizo, M. et al. Tissue clonality of dendritic cell subsets and emergency DCpoiesis revealed by multicolor fate mapping of DC progenitors. Sci. Immunol. 4, eaaw1941 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Grajales-Reyes, G. E. et al. Batf3 maintains autoactivation of Irf8 for commitment of a CD8alpha conventional DC clonogenic progenitor. Nat. Immunol. 16, 708–717 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sichien, D. et al. IRF8 transcription factor controls survival and function of terminally differentiated conventional and plasmacytoid dendritic cells, respectively. Immunity 45, 626–640 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Bachem, A. et al. Expression of XCR1 characterizes the Batf3-dependent lineage of dendritic cells capable of antigen cross-presentation. Front. Immunol. 3, 214 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Edelson, B. T. et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8alpha+ conventional dendritic cells. J. Exp. Med. 207, 823–836 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ginhoux, F. et al. The origin and development of nonlymphoid tissue CD103(+) DCs. J. Exp. Med. 206, 3115–3130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Scott, C. L. et al. The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2. J. Exp. Med. 213, 897–911 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bajana, S., Roach, K., Turner, S., Paul, J. & Kovats, S. IRF4 promotes cutaneous dendritic cell migration to lymph nodes during homeostasis and inflammation. J. Immunol. 189, 3368–3377 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Persson, E. K. et al. IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation. Immunity 38, 958–969 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Schlitzer, A. et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38, 970–983 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tussiwand, R. et al. Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses. Immunity 42, 916–928 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lewis, K. L. et al. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35, 780–791 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Breton, G. et al. Human dendritic cells (DCs) are derived from distinct circulating precursors that are precommitted to become CD1c+ or CD141+ DCs. J. Exp. Med. 213, 2861–2870 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, K. et al. Origin of dendritic cells in peripheral lymphoid organs of mice. Nat. Immunol. 8, 578–583 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, K. et al. In vivo analysis of dendritic cell development and homeostasis. Science 324, 392–397 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eisenbarth, S. C. Dendritic cell subsets in T cell programming: location dictates function. Nat. Rev. Immunol. 19, 89–103 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leon, B. & Lund, F. E. Compartmentalization of dendritic cell and T-cell interactions in the lymph node: anatomy of T-cell fate decisions. Immunol. Rev. 289, 84–100 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cook, S. J. et al. Differential chemokine receptor expression and usage by pre-cDC1 and pre-cDC2. Immunol. Cell Biol. 96, 1131–1139 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Esterhazy, D. et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature 569, 126–130 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alcantara-Hernandez, M. et al. High-dimensional phenotypic mapping of human dendritic cells reveals interindividual variation and tissue specialization. Immunity 47, 1037–1050 e1036 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ochiai, S. et al. CD326(lo)CD103(lo)CD11b(lo) dermal dendritic cells are activated by thymic stromal lymphopoietin during contact sensitization in mice. J. Immunol. 193, 2504–2511 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Malissen, B., Tamoutounour, S. & Henri, S. The origins and functions of dendritic cells and macrophages in the skin. Nat. Rev. Immunol. 14, 417–428 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Kumamoto, Y. et al. CD301b(+) dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity 39, 733–743 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Binnewies, M. et al. Unleashing type-2 dendritic cells to drive protective antitumor CD4(+) T cell immunity. Cell 177, 556–571 e516 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gao, Y. et al. Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity 39, 722–732 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brown, C. C. et al. Transcriptional basis of mouse and human dendritic cell heterogeneity. Cell 179, 846–863 e824 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bain, C. C. et al. TGFbetaR signalling controls CD103(+)CD11b(+) dendritic cell development in the intestine. Nat. Commun. 8, 620 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tenno, M. et al. Essential functions of Runx/Cbfβ in gut conventional dendritic cells for priming Rorγt+ T cells. Life Sci. Alliance 3, e201900441 (2020).

    Article  PubMed  Google Scholar 

  55. Geissmann, F., Jung, S. & Littman, D. R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Sunderkotter, C. et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J. Immunol. 172, 4410–4417 (2004).

    Article  PubMed  Google Scholar 

  57. Briseno, C. G. et al. Distinct transcriptional programs control cross-priming in classical and monocyte-derived dendritic cells. Cell Rep. 15, 2462–2474 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Helft, J. et al. GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c(+)MHCII(+) macrophages and dendritic cells. Immunity 42, 1197–1211 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. & Pamer, E. G. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Leon, B., Lopez-Bravo, M. & Ardavin, C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26, 519–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Plantinga, M. et al. Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 38, 322–335 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Goldszmid, R. S. et al. NK cell-derived interferon-gamma orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. Immunity 36, 1047–1059 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chow, K. V., Sutherland, R. M., Zhan, Y. & Lew, A. M. Heterogeneity, functional specialization and differentiation of monocyte-derived dendritic cells. Immunol. Cell Biol. 95, 244–251 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Doebel, T., Voisin, B. & Nagao, K. Langerhans cells—the macrophage in dendritic cell clothing. Trends Immunol. 38, 817–828 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13, 753–760 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mohammed, J. et al. Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-beta. Nat. Immunol. 17, 414–421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Merad, M. et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 3, 1135–1141 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hoeffel, G. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 209, 1167–1181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schulz, C. et al. A lineage of myeloid cells independent of myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Ferrer, I. R. et al. A wave of monocytes is recruited to replenish the long-term Langerhans cell network after immune injury. Sci. Immunol. 4, eaax8704 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cisse, B. et al. Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135, 37–48 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nagasawa, M., Schmidlin, H., Hazekamp, M. G., Schotte, R. & Blom, B. Development of human plasmacytoid dendritic cells depends on the combined action of the basic helix-loop-helix factor E2-2 and the Ets factor Spi-B. Eur. J. Immunol. 38, 2389–2400 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Rodrigues, P. F. et al. Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells. Nat. Immunol. 19, 711–722 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Blasius, A. L. et al. Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation. J. Immunol. 177, 3260–3265 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, J. et al. Characterization of Siglec-H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors. Blood 107, 3600–3608 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Blasius, A. L., Cella, M., Maldonado, J., Takai, T. & Colonna, M. Siglec-H is an IPC-specific receptor that modulates type I IFN secretion through DAP12. Blood 107, 2474–2476 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Engleman, E. G., Benike, C. J., Grumet, F. C. & Evans, R. L. Activation of human T lymphocyte subsets: helper and suppressor/cytotoxic T cells recognize and respond to distinct histocompatibility antigens. J. Immunol. 127, 2124–2129 (1981).

    CAS  PubMed  Google Scholar 

  78. Doyle, C. & Strominger, J. L. Interaction between CD4 and class II MHC molecules mediates cell adhesion. Nature 330, 256–259 (1987).

    Article  CAS  PubMed  Google Scholar 

  79. Reis e Sousa, C., Stahl, P. D. & Austyn, J. M. Phagocytosis of antigens by Langerhans cells in vitro. J. Exp. Med. 178, 509–519 (1993).

    Article  CAS  PubMed  Google Scholar 

  80. Hoffmann, E. et al. Autonomous phagosomal degradation and antigen presentation in dendritic cells. Proc. Natl Acad. Sci. USA 109, 14556–14561 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Garrett, W. S. et al. Developmental control of endocytosis in dendritic cells by Cdc42. Cell 102, 325–334 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Platt, C. D. et al. Mature dendritic cells use endocytic receptors to capture and present antigens. Proc. Natl Acad. Sci. USA 107, 4287–4292 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bonifaz, L. C. et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J. Exp. Med. 199, 815–824 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sallusto, F., Cella, M., Danieli, C. & Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182, 389–400 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Norbury, C. C., Chambers, B. J., Prescott, A. R., Ljunggren, H. G. & Watts, C. Constitutive macropinocytosis allows TAP-dependent major histocompatibility complex class I presentation of exogenous soluble antigen by bone marrow-derived dendritic cells. Eur. J. Immunol. 27, 280–288 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Kubo, A., Nagao, K., Yokouchi, M., Sasaki, H. & Amagai, M. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J. Exp. Med. 206, 2937–2946 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ouchi, T. et al. Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome. J. Exp. Med. 208, 2607–2613 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Niess, J. H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–258 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–367 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Tordesillas, L. et al. PDL2(+) CD11b(+) dermal dendritic cells capture topical antigen through hair follicles to prime LAP(+) Tregs. Nat. Commun. 9, 5238 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ouwehand, K. et al. CXCL12 is essential for migration of activated Langerhans cells from epidermis to dermis. Eur. J. Immunol. 38, 3050–3059 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Yao, C. & Kaplan, D. H. Langerhans cells transfer targeted antigen to dermal dendritic cells and acquire major histocompatibility complex II in vivo. J. Investig Dermatol. 138, 1665–1668 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Kissenpfennig, A. et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22, 643–654 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Mazzini, E., Massimiliano, L., Penna, G. & Rescigno, M. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1(+) macrophages to CD103(+) dendritic cells. Immunity 40, 248–261 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Deckers, J. et al. Epicutaneous sensitization to house dust mite allergen requires interferon regulatory factor 4-dependent dermal dendritic cells. J. Allergy Clin. Immunol. 140, 1364–1377 e1362 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Connor, L. M., Tang, S.-C., Camberis, M., Le Gros, G. & Ronchese, F. Helminth-conditioned dendritic cells prime CD4+ T cells to IL-4 production in vivo. J. Immunol. 193, 2709–2717 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Bollampalli, V. P. et al. BCG skin infection triggers IL-1R-MyD88-dependent migration of EpCAMlow CD11bhigh skin dendritic cells to draining lymph node during CD4+ T-cell priming. PLoS Pathog. 11, e1005206 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Gerner, M. Y., Torabi-Parizi, P. & Germain, R. N. Strategically localized dendritic cells promote rapid T cell responses to lymph-borne particulate antigens. Immunity 42, 172–185 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Sixt, M. et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Gretz, J. E., Norbury, C. C., Anderson, A. O., Proudfoot, A. E. & Shaw, S. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J. Exp. Med. 192, 1425–1440 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gerner, M. Y., Casey, K. A., Kastenmuller, W. & Germain, R. N. Dendritic cell and antigen dispersal landscapes regulate T cell immunity. J. Exp. Med. 214, 3105–3122 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gilfillan, C. B. et al. Clec9A(+) dendritic cells are not essential for antitumor CD8(+) T cell responses induced by poly I:C immunotherapy. J. Immunol. 200, 2978–2986 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Gutierrez-Martinez, E. et al. Cross-presentation of cell-associated antigens by MHC class I in dendritic cell subsets. Front. Immunol. 6, 363 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Dudziak, D. et al. Differential antigen processing by dendritic cell subsets in vivo. Science 315, 107–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Lehmann, C. H. K. et al. DC subset-specific induction of T cell responses upon antigen uptake via Fcgamma receptors in vivo. J. Exp. Med. 214, 1509–1528 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Caminschi, I. et al. The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 112, 3264–3273 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. den Haan, J. M. & Bevan, M. J. Constitutive versus activation-dependent cross-presentation of immune complexes by CD8(+) and CD8(-) dendritic cells in vivo. J. Exp. Med. 196, 817–827 (2002).

    Article  CAS  Google Scholar 

  108. Ballesteros-Tato, A., Leon, B., Lund, F. E. & Randall, T. D. Temporal changes in dendritic cell subsets, cross-priming and costimulation via CD70 control CD8(+) T cell responses to influenza. Nat. Immunol. 11, 216–224 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Baker, K. et al. Neonatal Fc receptor for IgG (FcRn) regulates cross-presentation of IgG immune complexes by CD8-CD11b+ dendritic cells. Proc. Natl Acad. Sci. USA 108, 9927–9932 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Le Borgne, M. et al. Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 24, 191–201 (2006).

    Article  PubMed  CAS  Google Scholar 

  111. Segura, E., Durand, M. & Amigorena, S. Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells. J. Exp. Med. 210, 1035–1047 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lugt, B. V. et al. Transcriptional programming of dendritic cells for enhanced MHC class II antigen presentation. Nat. Immunol. 15, 161–167 (2014).

    Article  CAS  Google Scholar 

  113. van Panhuys, N. TCR signal strength alters T-DC activation and interaction times and directs the outcome of differentiation. Front. Immunol. 7, 6 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. Annunziato, F., Romagnani, C. & Romagnani, S. The 3 major types of innate and adaptive cell-mediated effector immunity. J. Allergy Clin. Immunol. 135, 626–635 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol. 3, 549–557 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Lighvani, A. A. et al. T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc. Natl Acad. Sci. USA 98, 15137–15142 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhu, J. et al. The transcription factor T-bet is induced by multiple pathways and prevents an endogenous Th2 cell program during Th1 cell responses. Immunity 37, 660–673 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Szabo, S. J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Mullen, A. C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907–1910 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Hsieh, C. S. et al. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260, 547–549 (1993).

    Article  CAS  PubMed  Google Scholar 

  121. Manetti, R. et al. Interleukin 12 induces stable priming for interferon gamma (IFN-gamma) production during differentiation of human T helper (Th) cells and transient IFN-gamma production in established Th2 cell clones. J. Exp. Med. 179, 1273–1283 (1994).

    Article  CAS  PubMed  Google Scholar 

  122. Heufler, C. et al. Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells. Eur. J. Immunol. 26, 659–668 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Martinez-Lopez, M., Iborra, S., Conde-Garrosa, R. & Sancho, D. Batf3-dependent CD103+ dendritic cells are major producers of IL-12 that drive local Th1 immunity against Leishmania major infection in mice. Eur. J. Immunol. 45, 119–129 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Mashayekhi, M. et al. CD8alpha(+) dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity 35, 249–259 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ruffell, B. et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26, 623–637 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Everts, B. et al. Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12. J. Exp. Med. 231, 35–51 (2015).

    Google Scholar 

  127. Conejero, L. et al. Lung CD103+ dendritic cells restrain allergic airway inflammation through IL-12 production. JCI Insight 2, e90420 (2017).

    Article  PubMed Central  Google Scholar 

  128. Maldonado-López, R. et al. CD8alpha+ and CD8alpha- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med. 189, 587–592 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Arnold, I. C. et al. BATF3-dependent dendritic cells drive both effector and regulatory T-cell responses in bacterially infected tissues. PLoS Pathog. 15, e1007866 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Igyarto, B. Z. et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35, 260–272 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Luda, K. M. et al. IRF8 transcription-factor-dependent classical dendritic cells are essential for intestinal T cell homeostasis. Immunity 44, 860–874 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Demiri, M., Muller-Luda, K., Agace, W. W. & Svensson-Frej, M. Distinct D. C. subsets regulate adaptive Th1 and 2 responses during Trichuris muris infection. Parasite Immunol. 39, e12458 (2017).

  133. Muzaki, A. R. B. M. et al. Intestinal CD103+CD11b− dendritic cells restrain colitis via IFN-γ-induced anti-inflammatory response in epithelial cells. Mucosal Immunol. 9, 336–351 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Lonnberg, T. et al. Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria. Sci. Immunol. 2, eaal2192 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Flores-Langarica, A. et al. T-zone localized monocyte-derived dendritic cells promote Th1 priming to Salmonella. Eur. J. Immunol. 41, 2654–2665 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. De Koker, S. et al. Inflammatory monocytes regulate Th1 oriented immunity to CpG adjuvanted protein vaccines through production of IL-12. Sci. Rep. 7, 5986 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Nakano, H. et al. Blood-derived inflammatory dendritic cells in lymph nodes stimulate acute T helper type 1 immune responses. Nat. Immunol. 10, 394–402 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chow, K. V., Lew, A. M., Sutherland, R. M. & Zhan, Y. Monocyte-derived dendritic cells promote Th polarization, whereas conventional dendritic cells promote Th proliferation. J. Immunol. 196, 624–636 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Schreiber, H. A. et al. Intestinal monocytes and macrophages are required for T cell polarization in response to Citrobacter rodentium. J. Exp. Med. 210, 2025–2039 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mansouri, S. et al. Immature lung TNFR2− conventional DC 2 subpopulation activates moDCs to promote cyclic di-GMP mucosal adjuvant responses in vivo. Mucosal Immunol. 12, 277–289 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Kawabe, T. et al. Memory-phenotype CD4+ T cells spontaneously generated under steady-state conditions exert innate TH1-like effector function. Sci. Immunol. 2, eaam9304 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Pompei, L. et al. Disparity in IL-12 release in dendritic cells and macrophages in response to Mycobacterium tuberculosis is due to use of distinct TLRs. J. Immunol. 178, 5192–5199 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Manickasingham, S. P., Edwards, A. D., Schulz, O. & Reis e Sousa, C. The ability of murine dendritic cell subsets to direct T helper cell differentiation is dependent on microbial signals. Eur. J. Immunol. 33, 101–107 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Sporri, R. & Reis e Sousa, C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat. Immunol. 6, 163–170 (2005).

    Article  PubMed  CAS  Google Scholar 

  145. Gautier, G. et al. A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. J. Exp. Med. 201, 1435–1446 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Schulz, O. et al. CD40 triggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal. Immunity 13, 453–462 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Cella, M. et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J. Exp. Med. 184, 747–752 (1996).

    Article  CAS  PubMed  Google Scholar 

  148. Gerosa, F. et al. Differential regulation of interleukin 12 and interleukin 23 production in human dendritic cells. J. Exp. Med. 205, 1447–1461 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ma, X. et al. The interleukin 12 p40 gene promoter is primed by interferon gamma in monocytic cells. J. Exp. Med. 183, 147–157 (1996).

    Article  CAS  PubMed  Google Scholar 

  150. Sarhan, D. et al. Dendritic cell regulation of NK-cell responses involves lymphotoxin-alpha, IL-12, and TGF-beta. Eur. J. Immunol. 45, 1783–1793 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Groom, J. R. et al. CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity 37, 1091–1103 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Woodruff, M. C. et al. Trans-nodal migration of resident dendritic cells into medullary interfollicular regions initiates immunity to influenza vaccine. J. Exp. Med. 211, 1611–1621 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Martin-Fontecha, A. et al. Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat. Immunol. 5, 1260–1265 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Askenase, M. H. et al. Bone-marrow-resident NK cells prime monocytes for regulatory function during infection. Immunity 42, 1130–1142 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  156. Fitzsimmons, C. M., Falcone, F. H. & Dunne, D. W. Helminth allergens, parasite-specific IgE, and its protective role in human immunity. Front. Immunol. 5, 61 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Williams, J. W. et al. Transcription factor IRF4 drives dendritic cells to promote Th2 differentiation. Nat. Commun. 4, 2990 (2013).

    Article  PubMed  CAS  Google Scholar 

  158. Mayer, J. U. et al. Different populations of CD11b(+) dendritic cells drive Th2 responses in the small intestine and colon. Nat. Commun. 8, 15820 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Murakami, R. et al. A unique dermal dendritic cell subset that skews the immune response toward Th2. PLoS ONE 8, 13 (2013).

    Google Scholar 

  160. Nakajima, S. et al. Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J. Allergy Clin. Immunol. 129, 1048–1055 e1046 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Elentner, A. et al. Langerhans cells are critical in the development of atopic dermatitis-like inflammation and symptoms in mice. J. Cell Mol. Med. 13, 2658–2672 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Connor, L. M. et al. Th2 responses are primed by skin dendritic cells with distinct transcriptional profiles. J. Exp. Med. 214, 125–142 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Jankovic, D. et al. In the absence of IL-12, CD4(+) T cell responses to intracellular pathogens fail to default to a Th2 pattern and are host protective in an IL-10(-/-) setting. Immunity 16, 429–439 (2002).

    Article  CAS  PubMed  Google Scholar 

  164. MacDonald, A. S., Straw, A. D., Bauman, B. & Pearce, E. J. CD8- dendritic cell activation status plays an integral role in influencing Th2 response development. J. Immunol. 167, 1982–1988 (2001).

    Article  CAS  PubMed  Google Scholar 

  165. de Jong, E. C. et al. Microbial compounds selectively induce Th1 cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse th cell-polarizing signals. J. Immunol. 168, 1704–1709 (2002).

    Article  PubMed  Google Scholar 

  166. Kaisar, M. M. M. et al. Dectin-1/2-induced autocrine PGE2 signaling licenses dendritic cells to prime Th2 responses. PLoS Biol. 16, e2005504 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Everts, B. et al. Omega-1, a glycoprotein secreted by Schistosoma mansoni eggs, drives Th2 responses. J. Exp. Med. 206, 1673–1680 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Steinfelder, S. et al. The major component in schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega-1). J. Exp. Med. 206, 1681–1690 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. van Panhuys, N., Klauschen, F. & Germain, R. N. T-cell-receptor-dependent signal intensity dominantly controls CD4(+) T cell polarization in vivo. Immunity 41, 63–74 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Janss, T. et al. Interferon response factor-3 promotes the pro-Th2 activity of mouse lung CD11b+ conventional dendritic cells in response to house dust mite allergens. Eur. J. Immunol. 46, 2614–2628 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Liu, Y. J. TSLP in epithelial cell and dendritic cell cross talk. Adv. Immunol. 101, 1–25 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ochiai, S. et al. Thymic stromal lymphopoietin drives the development of IL-13(+) Th2 cells. Proc. Natl Acad. Sci. USA 115, 1033–1038 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Rochman, Y. et al. TSLP signaling in CD4(+) T cells programs a pathogenic T helper 2 cell state. Sci. Signal 11, eaam8858 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Kabata, H. et al. Targeted deletion of the TSLP receptor reveals cellular mechanisms that promote type 2 airway inflammation. Mucosal Immunol. (2020). https://doi.org/10.1038/s41385-020-0266-x.

  175. Webb, L. M. et al. Type I interferon is required for T helper (Th) 2 induction by dendritic cells. EMBO J. 36, 2404–2418 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Prout, M. S., Kyle, R. L., Ronchese, F. & Le Gros, G. IL-4 is a key requirement for IL-4- and IL-4/IL-13-expressing CD4 Th2 subsets in lung and skin. Front. Immunol. 9, 1211 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Le Gros, G., Ben-Sasson, S. Z., Seder, R., Finkelman, F. D. & Paul, W. E. Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J. Exp. Med. 172, 921–929 (1990).

    Article  PubMed  Google Scholar 

  178. Burrows, K. E. et al. OX40 blockade inhibits house dust mite driven allergic lung inflammation in mice and in vitro allergic responses in humans. Eur. J. Immunol. 45, 1116–1128 (2014).

    Article  CAS  Google Scholar 

  179. Hoshino, A. et al. Critical role for OX40 ligand in the development of pathogenic Th2 cells in a murine model of asthma. Eur. J. Immunol. 33, 861–869 (2003).

    Article  CAS  PubMed  Google Scholar 

  180. Seshasayee, D. et al. In vivo blockade of OX40 ligand inhibits thymic stromal lymphopoietin driven atopic inflammation. J. Clin. Investig. 117, 3868–3878 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Chu, D. K. et al. IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization. J. Allergy Clin. Immunol. 131, 187–200 e181 (2013). -188.

    Article  CAS  PubMed  Google Scholar 

  182. Ekkens, M. J. et al. The role of OX40 ligand interactions in the development of the Th2 response to the gastrointestinal nematode parasite Heligmosomoides polygyrus. J. Immunol. 170, 384–393 (2003).

    Article  CAS  PubMed  Google Scholar 

  183. Croft, M. Control of immunity by the TNFR-related molecule OX40 (CD134). Annu. Rev. Immunol. 28, 57–78 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Yoshie, O. & Matsushima, K. CCR4 and its ligands: from bench to bedside. Int Immunol. 27, 11–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  185. Sokol, C. L., Camire, R. B., Jones, M. C. & Luster, A. D. The chemokine receptor CCR8 promotes the migration of dendritic cells into the lymph node parenchyma to initiate the allergic immune response. Immunity 49, 449–463 e446 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V. K. IL-17 and Th17 cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Ghoreschi, K. et al. Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 467, 967–971 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Chung, Y. et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30, 576–587 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Mathers, A. R. et al. Differential capability of human cutaneous dendritic cell subsets to initiate Th17 responses. J. Immunol. 182, 921–933 (2009).

    Article  CAS  PubMed  Google Scholar 

  190. Kashem, S. W. et al. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity 42, 356–366 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Wohn, C. et al. Langerin(neg) conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. Proc. Natl Acad. Sci. USA 110, 10723–10728 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kim, T. G. et al. Skin-specific CD301b(+) dermal dendritic cells drive IL-17-mediated psoriasis-like immune response in mice. J. Investig. Dermatol. 138, 844–853 (2018).

    Article  CAS  PubMed  Google Scholar 

  193. Linehan, J. L. et al. Generation of Th17 cells in response to intranasal infection requires TGF-beta1 from dendritic cells and IL-6 from CD301b+ dendritic cells. Proc. Natl Acad. Sci. USA 112, 12782–12787 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Welty, N. E. et al. Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism. J. Exp. Med. 210, 2011–2024 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Satpathy, A. T. et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat. Immunol. 14, 937–948 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Liu, H. et al. TLR5 mediates CD172alpha(+) intestinal lamina propria dendritic cell induction of Th17 cells. Sci. Rep. 6, 22040 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Trautwein-Weidner, K. et al. Antigen-specific Th17 cells are primed by distinct and complementary dendritic cell subsets in oropharyngeal candidiasis. PLoS Pathog. 11, e1005164 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Aggarwal, S., Ghilardi, N., Xie, M. H., de Sauvage, F. J. & Gurney, A. L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003).

    Article  CAS  PubMed  Google Scholar 

  199. Steel, N. et al. TGFbeta-activation by dendritic cells drives Th17 induction and intestinal contractility and augments the expulsion of the parasite Trichinella spiralis in mice. PLoS Pathog. 15, e1007657 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Melton, A. C. et al. Expression of alphavbeta8 integrin on dendritic cells regulates Th17 cell development and experimental autoimmune encephalomyelitis in mice. J. Clin. Investig. 120, 4436–4444 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Acharya, M. et al. alphav Integrin expression by DCs is required for Th17 cell differentiation and development of experimental autoimmune encephalomyelitis in mice. J. Clin. Investig. 120, 4445–4452 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Re, F. & Strominger, J. L. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. J. Biol. Chem. 276, 37692–37699 (2001).

    Article  CAS  PubMed  Google Scholar 

  203. Schirmer, C., Klein, C., von Bergen, M., Simon, J. C. & Saalbach, A. Human fibroblasts support the expansion of IL-17-producing T cells via up-regulation of IL-23 production by dendritic cells. Blood 116, 1715–1725 (2010).

    Article  CAS  PubMed  Google Scholar 

  204. Riol-Blanco, L. et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 510, 157–161 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Kashem, SakeenW. et al. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 43, 515–526 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Cohen, J. A. et al. Cutaneous TRPV1(+) neurons trigger protective innate type 17 Anticipatory immunity. Cell 178, 919–932 e914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Josefowicz, S. Z., Lu, L.-F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Thornton, A. M. et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184, 3433–3441 (2010).

    Article  CAS  PubMed  Google Scholar 

  209. Chen, W. et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Fantini, M. C. et al. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J. Immunol. 172, 5149–5153 (2004).

    Article  CAS  PubMed  Google Scholar 

  211. Davidson, T. S., DiPaolo, R. J., Andersson, J. & Shevach, E. M. Cutting Edge: IL-2 is essential for TGF-beta-mediated induction of Foxp3+ T regulatory cells. J. Immunol. 178, 4022–4026 (2007).

    Article  CAS  PubMed  Google Scholar 

  212. Paidassi, H. et al. Preferential expression of integrin alphavbeta8 promotes generation of regulatory T cells by mouse CD103+ dendritic cells. Gastroenterology 141, 1813–1820 (2011).

    Article  CAS  PubMed  Google Scholar 

  213. Jones, A. et al. Immunomodulatory functions of BTLA and HVEM govern induction of extrathymic regulatory T cells and tolerance by dendritic cells. Immunity 45, 1066–1077 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Guilliams, M. et al. Skin-draining lymph nodes contain dermis-derived CD103(-) dendritic cells that constitutively produce retinoic acid and induce Foxp3(+) regulatory T cells. Blood 115, 1958–1968 (2010).

    Article  CAS  PubMed  Google Scholar 

  215. Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Hill, J. A. et al. Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi cells. Immunity 29, 758–770 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Xiao, S. et al. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J. Immunol. 181, 2277–2284 (2008).

    Article  CAS  PubMed  Google Scholar 

  218. Ovcinnikovs, V. et al. CTLA-4-mediated transendocytosis of costimulatory molecules primarily targets migratory dendritic cells. Sci. Immunol. 4, eaaw0902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Gu, P. et al. Trogocytosis of CD80 and CD86 by induced regulatory T cells. Cell Mol. Immunol. 9, 136–146 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Akkaya, B. et al. Regulatory T cells mediate specific suppression by depleting peptide-MHC class II from dendritic cells. Nat. Immunol. 20, 218–231 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Esterhazy, D. et al. Classical dendritic cells are required for dietary antigen-mediated induction of peripheral T(reg) cells and tolerance. Nat. Immunol. 17, 545–555 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Boucard-Jourdin, M. et al. beta8 Integrin expression and activation of TGF-beta by intestinal dendritic cells are determined by both tissue microenvironment and cell lineage. J. Immunol. 197, 1968–1978 (2016).

    Article  CAS  PubMed  Google Scholar 

  223. Veenbergen, S. et al. Colonic tolerance develops in the iliac lymph nodes and can be established independent of CD103(+) dendritic cells. Mucosal Immunol. 9, 894–906 (2016).

    Article  CAS  PubMed  Google Scholar 

  224. Shklovskaya, E. et al. Langerhans cells are precommitted to immune tolerance induction. Proc. Natl Acad. Sci. USA 108, 18049–18054 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Kautz-Neu, K. et al. Langerhans cells are negative regulators of the anti-Leishmania response. J. Exp. Med. 208, 885–891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Price, J. G. et al. CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation. Nat. Immunol. 16, 1060–1068 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Baratin, M. et al. Homeostatic NF-kappaB signaling in steady-state migratory dendritic cells regulates immune homeostasis and tolerance. Immunity 42, 627–639 (2015).

    Article  CAS  PubMed  Google Scholar 

  228. Ardouin, L. et al. Broad and largely concordant molecular changes characterize tolerogenic and immunogenic dendritic cell maturation in thymus and periphery. Immunity 45, 305–318 (2016).

    Article  CAS  PubMed  Google Scholar 

  229. Crotty, S. T follicular helper cell biology: a decade of discovery and diseases. Immunity 50, 1132–1148 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Goenka, R. et al. Cutting edge: dendritic cell-restricted antigen presentation initiates the follicular helper T cell program but cannot complete ultimate effector differentiation. J. Immunol. 187, 1091–1095 (2011).

    Article  CAS  PubMed  Google Scholar 

  231. Choi, Y. S. et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34, 932–946 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Nurieva, R. I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Choi, Y. S. et al. Bcl6 expressing follicular helper CD4 T cells are fate committed early and have the capacity to form memory. J. Immunol. 190, 4014–4026 (2013).

    Article  CAS  PubMed  Google Scholar 

  234. Hiramatsu, Y. et al. c-Maf activates the promoter and enhancer of the IL-21 gene, and TGF-beta inhibits c-Maf-induced IL-21 production in CD4+ T cells. J. Leukoc. Biol. 87, 703–712 (2010).

    Article  CAS  PubMed  Google Scholar 

  235. Vogelzang, A. et al. A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 29, 127–137 (2008).

    Article  CAS  PubMed  Google Scholar 

  236. Riteau, N. et al. Water-in-oil-only adjuvants selectively promote T follicular helper cell polarization through a type I IFN and IL-6-dependent pathway. J. Immunol. 197, 3884–3893 (2016).

    Article  CAS  PubMed  Google Scholar 

  237. Batten, M. et al. IL-27 supports germinal center function by enhancing IL-21 production and the function of T follicular helper cells. J. Exp. Med. 207, 2895–2906 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Barbet, G. et al. Sensing microbial viability through bacterial RNA augments T follicular helper cell and antibody responses. Immunity 48, 584–598 e585 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Tahiliani, V., Hutchinson, T. E., Abboud, G., Croft, M. & Salek-Ardakani, S. OX40 cooperates with ICOS to amplify follicular Th cell development and germinal center reactions during infection. J. Immunol. 198, 218–228 (2017).

    Article  CAS  PubMed  Google Scholar 

  240. Dell’Aringa, M. & Reinhardt, R. L. Notch signaling represents an important checkpoint between follicular T-helper and canonical T-helper 2 cell fate. Mucosal Immunol. 11, 1079–1091 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Johnston, R. J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Ballesteros-Tato, A. et al. T follicular helper cell plasticity shapes pathogenic T helper 2 cell-mediated immunity to inhaled house dust mite. Immunity 44, 259–273 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Li, J., Lu, E., Yi, T. & Cyster, J. G. EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells. Nature 533, 110–114 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Arroyo, E. N. & Pepper, M. B cells are sufficient to prime the dominant CD4+ Tfh response to Plasmodium infection. J. Exp. Med. 217, e20190849 (2020).

    Article  PubMed  CAS  Google Scholar 

  245. Krishnaswamy, J. K., Alsen, S., Yrlid, U., Eisenbarth, S. C. & Williams, A. Determination of T follicular helper cell fate by dendritic cells. Front. Immunol. 9, 2169 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Krishnaswamy, J. K. et al. Migratory CD11b(+) conventional dendritic cells induce T follicular helper cell-dependent antibody responses. Sci. Immunol. 2, eaam9169 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Briseno, C. G. et al. Notch2-dependent DC2s mediate splenic germinal center responses. Proc. Natl Acad. Sci. USA 115, 10726–10731 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Shin, C. et al. CD8alpha(-) dendritic cells induce antigen-specific T follicular helper cells generating efficient humoral immune responses. Cell Rep. 11, 1929–1940 (2015).

    Article  CAS  PubMed  Google Scholar 

  249. Calabro, S. et al. Bridging channel dendritic cells induce immunity to transfused red blood cells. J. Exp. Med. 213, 887–896 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Durand, M. et al. Human lymphoid organ cDC2 and macrophages play complementary roles in T follicular helper responses. J. Exp. Med. 216, 1561–1581 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Kumamoto, Y., Hirai, T., Wong, P. W., Kaplan, D. H. & Iwasaki, A. CD301b(+) dendritic cells suppress T follicular helper cells and antibody responses to protein antigens. Elife 5, e17979 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Kato, Y. et al. Targeting antigen to Clec9A primes follicular Th cell memory responses capable of robust recall. J. Immunol. 195, 1006–1014 (2015).

    Article  CAS  PubMed  Google Scholar 

  253. Lahoud, M. H. et al. Targeting antigen to mouse dendritic cells via Clec9A induces potent CD4 T cell responses biased toward a follicular helper phenotype. J. Immunol. 187, 842–850 (2011).

    Article  CAS  PubMed  Google Scholar 

  254. Bouteau, A. et al. DC subsets regulate humoral immune responses by supporting the differentiation of distinct Tfh cells. Front. Immunol. 10, 1134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Yao, C. et al. Skin dendritic cells induce follicular helper T cells and protective humoral immune responses. J. Allergy Clin. Immunol. 136, 1387–1397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Levin, C. et al. Critical role for skin-derived migratory DCs and Langerhans cells in TFH and GC responses after intradermal immunization. J. Investig. Dermatol. 137, 1905–1913 (2017).

    Article  CAS  PubMed  Google Scholar 

  257. Chakarov, S. & Fazilleau, N. Monocyte-derived dendritic cells promote T follicular helper cell differentiation. EMBO Mol. Med. 6, 590–603 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Fillatreau, S. & Gray, D. T cell accumulation in B cell follicles is regulated by dendritic cells and is independent of B cell activation. J. Exp. Med. 197, 195–206 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Pattarini, L. et al. TSLP-activated dendritic cells induce human T follicular helper cell differentiation through OX40-ligand. J. Exp. Med. 214, 1529–1546 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Hu, H. et al. Noncanonical NF-kappaB regulates inducible costimulator (ICOS) ligand expression and T follicular helper cell development. Proc. Natl Acad. Sci. USA 108, 12827–12832 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Hercor, M. et al. Antigen-presenting cell-derived IL-6 restricts the expression of GATA3 and IL-4 by follicular helper T cells. J. Leukoc. Biol. 101, 5–14 (2017).

    Article  CAS  PubMed  Google Scholar 

  262. De Giovanni, M. et al. Spatiotemporal regulation of type I interferon expression determines the antiviral polarization of CD4+ T cells. Nat. Immunol. 21, 321–330 (2020).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  263. Cucak, H., Yrlid, U., Reizis, B., Kalinke, U. & Johansson-Lindbom, B. Type I interferon signaling in dendritic cells stimulates the development of lymph-node-resident T follicular helper cells. Immunity 31, 491–501 (2009).

    Article  CAS  PubMed  Google Scholar 

  264. Kulkarni, R. R. et al. Activation of the RIG-I pathway during influenza vaccination enhances the germinal center reaction, promotes T follicular helper cell induction, and provides a dose-sparing effect and protective immunity. J. Virol. 88, 13990–14001 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Qi, H., Cannons, J. L., Klauschen, F., Schwartzberg, P. L. & Germain, R. N. SAP-controlled T-B cell interactions underlie germinal centre formation. Nature 455, 764–769 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Eastman, A. J. et al. Epigenetic stabilization of DC and DC precursor classical activation by TNFα contributes to protective T cell polarization. Sci. Adv. 5, eaaw9051 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the Health Research Council of New Zealand to F.R. and the Malaghan Institute of Medical Research. K.L.H. was supported by a postdoctoral fellowship from the Malaghan Institute of Medical Research, New Zealand.

Author information

Authors and Affiliations

Authors

Contributions

K.L.H. wrote the manuscript and drafted the figures; F.R. provided edits and comments; and both authors agreed on the final manuscript and figures.

Corresponding author

Correspondence to Franca Ronchese.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilligan, K.L., Ronchese, F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell Mol Immunol 17, 587–599 (2020). https://doi.org/10.1038/s41423-020-0465-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-0465-0

Keywords

This article is cited by

Search

Quick links