Skip to main content
Log in

Large deviation principle for the 2D stochastic Cahn–Hilliard–Navier–Stokes equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We establish a large deviation principle for the 2D stochastic Cahn–Hilliard–Navier–Stokes equations driven by multiplicative noise in a bounded domain. This system consists of the Navier–Stokes equations for the velocity, coupled with a Cahn–Hilliard model for the order parameter. The proof is completed using a weak convergence approach based on the variational representational of functional of infinite-dimensional Brownian motion. In particular, we directly prove the existence and uniqueness of the solution of the stochastic controlled equations instead of using the Girsanov transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bensoussan, A., Temam, R.: Equations stochastiques du type Navier–Stokes. J. Funct. Anal. 13(2), 195–222 (1973)

    Article  MATH  Google Scholar 

  2. Budhiraja, A., Dupuis, P.: A variational representation for positive functionals of infinite dimensional Brownian motion. Probab. Math. Stat. Wroclaw Univ. 20(1), 39–61 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Budhiraja, A., Dupuis, P., Maroulas, V.: Large deviations for infinite dimensional stochastic dynamical systems. Ann. Probab. 36(4), 1390–1420 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bergh, J., Löfström, J.: Interpolation Spaces. Grundlehren der Mathematischen Wissenschaften. An Introduction. Springer, Berlin, New York (1976)

  5. Bessaih, H., Millet, A.: Large deviations and the zero viscosity limit for 2D stochastic Navier-Stokes equations with free boundary. SIAM J. Math. Anal. 44(3), 1861–1893 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Breckner, H.: Approximation and optimal control of the stochastic Navier–Stokes equation. Mathematisch Naturwissenschaftlich Technischen Fakultät der Martin Luther Universität Halle Wittenberg, Diss (1999)

  7. Breckner, H.: Galerkin approximation and the strong solution of the Navier–Stokes equation. J. Appl. Math. Stoch. Anal. 13(3), 239–259 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brzeźniak, Z.: Stochastic partial differential equations in M-type 2 Banach spaces. Potential Anal. 4(1), 1–45 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chueshov, I., Millet, A.: Stochastic 2D hydrodynamical type systems: well posedness and large deviations. Appl. Math. Optim. 61(3), 379–420 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys., 28(2), 258–267 (1958)

    Article  MATH  Google Scholar 

  11. Caraballo, T., Real, J., Taniguchi, T.: On the existence and uniqueness of solutions to stochastic three-dimensional Lagrangian averaged Navier–Stokes equations. Proc. R. Soc. A: Math. Phys. Eng. Sci. 462(2066), 459–479 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  13. Deugoué, G., Medjo, T.T.: Convergence of the solution of the stochastic 3D globally modified Cahn–Hilliard–Navier–Stokes equations. J. Differ. Equ. 265(2), 545–592 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Deugoué, G., Medjo, T.T.: Large deviation for a 2D Cahn–Hilliard–Navier–Stokes model under random influences. J. Math. Anal. Appl. 486(1), 123863 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duan, J., Millet, A.: Large deviations for the Boussinesq equations under random influences. Stoch. Proceess. Appl. 119(6), 2052–2081 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dong, Z., Xiong, J., Zhai, J.L., Zhang, T.: A moderate deviation principle for 2-D stochastic Navier–Stokes equations driven by multiplicative Lévy noises. J. Funct. Anal. 272(1), 227–254 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Du, Q., Li, M.L., Liu, C.: Analysis of a phase field Navier–Stokes vesicle-fluid interaction model. Discrete Contin. Dyn. Syst. Ser. B 8(3), 539–556 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Dupuis, P., Ellis, R.S.: A Weak Convergence Approach to the Theory of Large Deviations. Wiley, New York (1997)

    Book  MATH  Google Scholar 

  19. Fang, L., You, B.: Random attractor for the stochastic Cahn–Hilliard–Navier–Stokes system with small additive noise. Stoch. Anal. Appl. 36(3), 546–559 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feireisl, E., Petzeltová, H., Rocca, E., Schimperna, G.: Analysis of a phase-field model for two-phase compressible fluids. Math. Models Methods Appl. Sci. 20(7), 1129–1160 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Frigeri, S., Gal, C.G., Grasselli, M.: On nonlocal Cahn–Hilliard–Navier–Stokes systems in two dimensions. J. Nonlinear Sci. 26(4), 847–893 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Frigeri, S., Grasselli, M., Krejci, P.: Strong solutions for two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems in two dimensions. J. Differ. Equ. 255(9), 2587–2614 (2013)

    Article  MATH  Google Scholar 

  23. Frigeri, S., Rocca, E., Sprekels, J.: Optimal distributed control of a nonlocal Cahn–Hilliard–Navier–Stokes systems in two dimensions. SIAM J. Control Optim. 54(1), 221–250 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gal, C.G., Grasselli, M.: Long time behavior for a model of homogeneous incompressible two-phase flows. Discrete Contin. Dyn. Syst 28(1), 1–39 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gal, C.G., Grasselli, M.: Asymptotic behavior of a Cahn–Hilliard–Navier–Stokes system in 2D. Ann. Ins. H. Poincaré Anal. Non Linéaire 27(1), 401–436 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Glatt-Holtz, N.E., Ziane, M.: Strong pathwise solutions of the stochastic Navier–Stokes system. Adv. Differ. Equ. 14(5/6), 567–600 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Glatt-Holtz, N.E., Vicol, V.C.: Local and global existence of smooth solutions for the stochastic Euler equations with multiplicative noise. Ann. Probab. 42(1), 80–145 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Röckner, M., Zhang, T., Zhang, X.: Large deviations for stochastic tamed 3D Navier–Stokes equations. Appl. Math. Optim. 61(2), 267–285 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sritharan, S.S., Sundar, P.: Large deviations for the two-dimensional Navier–Stokes equations with multiplicative noise. Stochastic Proceess. Appl. 116(11), 1636–1659 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Medjo, T.T.: On the existence and uniqueness of solution to a stochastic 2D Cahn–Hilliard–Navier–Stokes model. J. Differ. Equ. 263(2), 1028–1054 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Medjo, T.T.: Pullback attractors for a non-autonomous homogeneous two-phase flow model. J. Differ. Equ. 253(6), 1779–1806 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Medjo, T.T.: Pullback attractors for a non-autonomous Cahn–Hilliard–Navier–Stokes system. Asymptot. Anal. 90, 21–51 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, R., Zhai, J.L., Zhang, T.: A moderate deviation principle for 2-D stochastic Navier–Stokes equations. J. Differ. Equ. 258(10), 3363–3390 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu, T., Zhang, T.: Large deviation principles for 2-D stochastic Navier–Stokes equations driven by Lévy processes. J. Funct. Anal. 257(5), 1519–1545 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhai, J.L., Zhang, T.: Large deviation principles for 2-D stochastic Navier–Stokes equations driven by multiplicative Lévy processes. Bernoulli 21(4), 2351–2392 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhou, Y., Fan, J.: The vanishing viscosity limit for a 2d Cahn–Hilliard–Navier–Stokes system with a slip boundary condition. Nonlinear Anal. Real World Appl. 14(2), 1130–1134 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the referees for the very helpful comments and suggestions. Z. Qiu’s research is supported by the CSC under grant No.201806160015. H. Wang’s research is supported by the National Natural Science Foundation of China (Grant No. 11901066), the Natural Science Foundation of Chongqing (Grant No. cstc2019jcyj-msxmX0167) and Project No. 2019CDXYST0015 supported by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaqiao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Z., Wang, H. Large deviation principle for the 2D stochastic Cahn–Hilliard–Navier–Stokes equations. Z. Angew. Math. Phys. 71, 88 (2020). https://doi.org/10.1007/s00033-020-01312-w

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01312-w

Mathematics Subject Classification

Keywords

Navigation