Skip to main content
Log in

Long-Term Evolution of the Solar Corona Using PROBA2 Data

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We use The Sun Watcher with Active Pixel System detector and Image Processing (SWAP) imager onboard the Project for Onboard Autonomy 2 (PROBA2) mission to study the evolution of large-scale EUV structures in the solar corona observed throughout Solar Cycle 24 (from 2010 to 2019). We discuss the evolution of the on-disk coronal features and at different heights above the solar surface based on EUV intensity changes. We also look at the evolution of the corona in equatorial and polar regions and compare them at different phases of the solar cycle, as well as with sunspot-number evolution and with the PROBA2/Large Yield RAdiometer (LYRA) signal. The main results are as follows: The three time series (SWAP on-disk average brightness, sunspot number, and LYRA irradiance) are very well correlated, with correlation coefficients around 0.9. The average rotation rate of bright features at latitudes of +15, 0, and −15 was around 15 degree day−1 throughout the period studied. A secondary peak in EUV averaged intensity at the poles was observed on the descending phase of SC24. These peaks (at North and South Poles, respectively) seem to be associated with the start of the development of the (polar) coronal holes. Large-scale off-limb structures were visible from around March 2010 to around March 2016, meaning that they were absent at the minimum phase of solar activity. A fan at the North Pole persisted for more than 11 Carrington rotations (February 2014 to March 2015), and it could be seen up to altitudes of 1.6 R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Notes

  1. Note that the values derived from Figure 9 are distinct from the ones derived from Figure 7 due to different smoothing procedures.

References

  • Abbo, L., Ofman, L., Antiochos, S.K., Hansteen, V.H., Harra, L., Ko, Y.-K., Lapenta, G., Li, B., Riley, P., Strachan, L., von Steiger, R., Wang, Y.-M.: 2016, Slow solar wind: observations and modeling. Space Sci. Rev.201, 55. DOI. ADS.

    Article  ADS  Google Scholar 

  • Adams, W.M.: 1976, Differential rotation of photospheric magnetic fields associated with coronal holes. Solar Phys.47, 601. DOI. ADS.

    Article  ADS  Google Scholar 

  • Adams, W.M., Tang, F.: 1977, Differential rotation of short-lived solar filaments. Solar Phys.55, 499. DOI. ADS.

    Article  ADS  Google Scholar 

  • Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: methods of calculating coronal fields. Solar Phys.9, 131. DOI. ADS.

    Article  ADS  Google Scholar 

  • Asvestari, E., Heinemann, S.G., Temmer, M., Pomoell, J., Kilpua, E., Magdalenic, J., Poedts, S.: 2019, Reconstructing coronal hole areas with EUHFORIA and adapted WSA model: optimizing the model parameters. J. Geophys. Res.124, 8280. DOI. ADS.

    Article  Google Scholar 

  • Badalyan, O.G., Obridko, V.N.: 2018, Magnetic field as a tracer for studying the differential rotation of the solar corona. Solar Phys.293, 128. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bagashvili, S.R., Shergelashvili, B.M., Japaridze, D.R., Chargeishvili, B.B., Kosovichev, A.G., Kukhianidze, V., Ramishvili, G., Zaqarashvili, T.V., Poedts, S., Khodachenko, M.L., De Causmaecker, P.: 2017, Statistical properties of coronal hole rotation rates: are they linked to the solar interior? Astron. Astrophys.603, A134. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bale, S.D., Badman, S.T., Bonnell, J.W., Bowen, T.A., Burgess, D., Case, A.W., Cattell, C.A., Chandran, B.D.G., Chaston, C.C., Chen, C.H.K., Drake, J.F., Dudok de Witt, T., Eastwood, P., Ergun, R.E., Farrell, W.M., Fong, C., Goetz, K., Goldstein, M., Goodrich, K.A., Harvey, P.R., Horbury, T.S., Howes, G.G., Kasper, J.C., Kellogg, P.J., Klimcuk, J.A., Korreck, K.E., Krasnoselskikh, V.V., Krucker, S., Laker, R., Larson, D.E., MacDowall, R.J., Maksimovic, M., Malaspina, D.M., Martinez-Oliveros, J., McComas, D.J., Meyer-Vernet, N., Moncuquet, M., Mozer, F.S., Phan, T.D., Pulupa, M., Raouafi, N.E., Salem, C., Stansby, D., Stevens, M., Szabo, A., Velli, M., Woolley, T., Wygant, J.R.: 2019, Highly structured slow solar wind emerging from an equatorial coronal hole. Nature576, 237. DOI. ADS.

    Article  ADS  Google Scholar 

  • Beck, J.G.: 2000, A comparison of differential rotation measurements – (invited review). Solar Phys.191, 47. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bhatt, H., Trivedi, R., Sharma, S.K., Vats, H.O.: 2017, Variations in the solar coronal rotation with altitude – revisited. Solar Phys.292, 55. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brajsa, R., Ruzdjak, V., Vrsnak, B., Pohjolainen, S., Urpo, S., Schroll, A., Wohl, H.: 1997, On the possible changes of the solar differential rotation during the activity cycle determined using microwave low-brightness regions and H filaments as tracers. Solar Phys.171, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cranmer, S.R.: 2009, Coronal holes. Liv. Rev. Solar Phys.6, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys.162, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dominique, M., Hochedez, J.-F., Schmutz, W., Dammasch, I.E., Shapiro, A.I., Kretzschmar, M., Zhukov, A.N., Gillotay, D., Stockman, Y., BenMoussa, A.: 2013, The LYRA instrument onboard PROBA2: description and in-flight performance. Solar Phys.286, 21. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dzhaparidze, D.R., Gigolashvili, M.S.: 1992, Investigation of the solar differential rotation by hydrogen filaments in 1976–1986. Solar Phys.141, 267. ADS.

    Article  ADS  Google Scholar 

  • Eselevich, M.V., Eselevich, V.G.: 2007, Streamer belt in the solar corona and the Earth’s orbit. Geomagn. Aeron.47, 291. DOI. ADS.

    Article  ADS  Google Scholar 

  • Garton, T.M., Gallagher, P.T., Murray, S.A.: 2018, Automated coronal hole identification via multi-thermal intensity segmentation. J. Space Weather Space Clim.8, A02. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gigolashvili, M.S., Japaridze, D.R., Kukhianidze, V.J.: 2013, Investigation of the differential rotation by H\(\alpha \) filaments and long-lived magnetic features for solar activity Cycles 20 and 21. Solar Phys.282, 51. DOI. ADS.

    Article  ADS  Google Scholar 

  • Giordano, S., Mancuso, S.: 2008, Coronal rotation at solar minimum from UV observations. Astrophys. J.688, 656. DOI. ADS.

    Article  ADS  Google Scholar 

  • Glackin, D.L.: 1974, Differential rotation of solar filaments. Solar Phys.36, 51. DOI. ADS.

    Article  ADS  Google Scholar 

  • Golubeva, E.M., Mordvinov, A.V.: 2016, Decay of activity complexes, formation of unipolar magnetic regions, and coronal holes in their causal relation. Solar Phys.291, 3605. DOI. ADS.

    Article  ADS  Google Scholar 

  • Goryaev, F., Slemzin, V., Vainshtein, L., Williams, D.R.: 2014, Study of extreme-ultraviolet emission and properties of a coronal streamer from PROBA2/SWAP, Hinode/EIS and Mauna Loa Mk4 observations. Astrophys. J.781, 100. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gosling, J.T., Borrini, G., Asbridge, J.R., Bame, S.J., Feldman, W.C., Hansen, R.T.: 1981, Coronal streamers in the solar wind at 1 AU. J. Geophys. Res.86, 5438. DOI. ADS.

    Article  ADS  Google Scholar 

  • Guennou, C., Rachmeler, L., Seaton, D., Auchère, F.: 2016, Lifecycle of a large-scale polar coronal pseudostreamer/cavity system. Front. Astron. Space Sci.3, 14. DOI. ADS.

    Article  ADS  Google Scholar 

  • Halain, J.-P., Berghmans, D., Seaton, D.B., Nicula, B., De Groof, A., Mierla, M., Mazzoli, A., Defise, J.-M., Rochus, P.: 2013, The SWAP EUV imaging telescope. Part II: in-flight performance and calibration. Solar Phys.286, 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hansen, S.F., Hansen, R.T.: 1975, Differential rotation and reconnection as basic causes of some coronal reorientations. Solar Phys.44, 503. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hara, H.: 2009, Differential rotation rate of X-ray bright points and source region of their magnetic fields. Astrophys. J.697, 980. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hiremath, K.M., Hegde, M.: 2013, Rotation rates of coronal holes and their probable anchoring depths. Astrophys. J.763, 137. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hoeksema, J.T.: 1995, The large-scale structure of the heliospheric current sheet during the ULYSSES epoch. Space Sci. Rev.72, 137. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hyder, C.L.: 1965, The “polar Crown” of filaments and the Sun’s polar magnetic fields. Astrophys. J.141, 272. DOI. ADS.

    Article  ADS  Google Scholar 

  • Imada, S., Fujiyama, M.: 2018, Effect of magnetic field strength on solar differential rotation and meridional circulation. Astrophys. J. Lett.864, L5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Insley, J.E., Moore, V., Harrison, R.A.: 1995, The differential rotation of the corona as indicated by coronal holes. Solar Phys.160, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Janardhan, P., Fujiki, K., Ingale, M., Bisoi, S.K., Rout, D.: 2018, Solar cycle 24: an unusual polar field reversal. Astron. Astrophys.618, A148. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev.136, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karachik, N., Pevtsov, A.A., Sattarov, I.: 2006, Rotation of solar corona from tracking of coronal bright points. Astrophys. J.642, 562. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The Hinode (Solar-B) mission: an overview. Solar Phys.243, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krista, L.D., Gallagher, P.T.: 2009, Automated coronal hole detection using local intensity thresholding techniques. Solar Phys.256, 87. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krista, L.D., McIntosh, S.W., Leamon, R.J.: 2018, The longitudinal evolution of equatorial coronal holes. Astron. J.155, 153. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lamb, D.A.: 2017, Measurements of solar differential rotation and meridional circulation from tracking of photospheric magnetic features. Astrophys. J.836, 10. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys.275, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, K.J., Feng, W., Shi, X.J., Xie, J.L., Gao, P.X., Liang, H.F.: 2014, Long-term variations of solar differential rotation and sunspot activity: revisited. Solar Phys.289, 759. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lockyer, W.J.S.: 1931, On the relationship between solar prominences and the forms of the corona. Mon. Not. Roy. Astron. Soc.91, 797. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mancuso, S., Giordano, S.: 2011, Differential rotation of the ultraviolet corona at solar maximum. Astrophys. J.729, 79. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mancuso, S., Giordano, S.: 2012, Coronal equatorial rotation during solar cycle 23: radial variation and connections with helioseismology. Astron. Astrophys.539, A26. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mancuso, S., Giordano, S.: 2013, Influence of projection effects on the observed differential rotation rate in the UV corona. J. Adv. Res.4, 283. DOI. ADS.

    Article  Google Scholar 

  • McComas, D.J., Ebert, R.W., Elliott, H.A., Goldstein, B.E., Gosling, J.T., Schwadron, N.A., Skoug, R.M.: 2008, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett.35, L18103. DOI. ADS.

    Article  ADS  Google Scholar 

  • McIntosh, P.S.: 2003, Patterns and dynamics of solar magnetic fields and HeI coronal holes in cycle 23. In: Wilson, A. (ed.) Solar Variability as an Input to the Earth’s EnvironmentSP-535, ESA, Noordwijk, 807. ADS.

    Google Scholar 

  • Meeus, J.: 1958, Une formule d’adoucissement pour l’activité solaire. Ciel Terre74, 445. ADS.

    ADS  Google Scholar 

  • Mordvinov, A., Pevtsov, A., Bertello, L., Petri, G.: 2016, The reversal of the Sun’s magnetic field in cycle 24. J. Solar-Terr. Phys.2, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Morgan, H.: 2011, The rotation of the white light solar corona at height 4 Rsun from 1996 to 2010: a tomographical study of large angle and spectrometric coronagraph C2 observations. Astrophys. J.738, 189. DOI. ADS.

    Article  ADS  Google Scholar 

  • Panasenco, O., Velli, M.: 2013, Coronal pseudostreamers: source of fast or slow solar wind? In: Zank, G.P, Borovsky, J., Bruno, R., Cirtain, J., Cranmer, S., Elliott, H., Giacalone, J., Gonzalez, W., Li, G., Marsch, E., Moebius, E., Pogorelov, N., Spann, J., Verkhoglyadova, O. (eds.) Solar Wind 13CP-1539, AIP, Melville, 50. DOI. ADS.

    Chapter  Google Scholar 

  • Petrie, G., Ettinger, S.: 2017, Polar field reversals and active region decay. Space Sci. Rev.210, 77. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rachmeler, L.A., Platten, S.J., Bethge, C., Seaton, D.B., Yeates, A.R.: 2014, Observations of a hybrid double-streamer/pseudostreamer in the solar corona. Astrophys. J. Lett.787, L3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reale, F.: 2014, Coronal loops: observations and modeling of confined plasma. Living Rev. Solar Phys.11, 4. DOI. ADS.

    Article  ADS  Google Scholar 

  • Riley, P., Luhmann, J.G.: 2012, Interplanetary signatures of unipolar streamers and the origin of the slow solar wind. Solar Phys.277, 355. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ruždjak, D., Brajša, R., Sudar, D., Skokić, I., Poljančić Beljan, I.: 2017, A relationship between the solar rotation and activity analysed by tracing sunspot groups. Solar Phys.292, 179. DOI. ADS.

    Article  ADS  Google Scholar 

  • Santandrea, S., Gantois, K., Strauch, K., Teston, F., Tilmans, E., Baijot, C., Gerrits, D., De Groof, A., Schwehm, G., Zender, J.: 2013, PROBA2: mission and spacecraft overview. Solar Phys.286, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys.6, 442. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys.275, 207. DOI. ADS.

    Article  ADS  Google Scholar 

  • Seaton, D.B., De Groof, A., Shearer, P., Berghmans, D., Nicula, B.: 2013a, SWAP observations of the long-term, large-scale evolution of the extreme-ultraviolet solar corona. Astrophys. J.777, 72. DOI. ADS.

    Article  ADS  Google Scholar 

  • Seaton, D.B., Berghmans, D., Nicula, B., Halain, J.-P., De Groof, A., Thibert, T., Bloomfield, D.S., Raftery, C.L., Gallagher, P.T., Auchère, F., Defise, J.-M., D’Huys, E., Lecat, J.-H., Mazy, E., Rochus, P., Rossi, L., Schühle, U., Slemzin, V., Yalim, M.S., Zender, J.: 2013b, The SWAP EUV imaging telescope part I: instrument overview and pre-flight testing. Solar Phys.286, 43. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sheeley, N.R., Wang, Y.-M., Hawley, S.H., Brueckner, G.E., Dere, K.P., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Paswaters, S.E., Socker, D.G., St. Cyr, O.C., Wang, D., Lamy, P.L., Llebaria, A., Schwenn, R., Simnett, G.M., Plunkett, S., Biesecker, D.A.: 1997, Measurements of flow speeds in the corona between 2 and 30 Rs. Astrophys. J.484, 472. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shelke, R.N., Pande, M.C.: 1985, Differential rotation of coronal holes. Solar Phys.95, 193. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shi, X.J., Xie, J.L.: 2013, The rotation profile of solar magnetic fields between ±60° latitudes. Astrophys. J. Lett.773, L6. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shi, X.J., Xie, J.L.: 2014, Rotation of solar magnetic fields for the current Solar Cycle 24. Astron. J.148, 101. DOI. ADS.

    Article  ADS  Google Scholar 

  • Snodgrass, H.B., Ulrich, R.K.: 1990, Rotation of Doppler features in the solar photosphere. Astrophys. J.351, 309. DOI. ADS.

    Article  ADS  Google Scholar 

  • Stenborg, G., Schwenn, R., Inhester, B., Srivastava, N.: 1999, On the rotation rate of the emission solar corona. In: Wilson, A., et al.(eds.) Magnetic Fields and Solar ProcessesSP-9, ESA, Noordwijk, 1107. ADS.

    Google Scholar 

  • Strachan, L., Suleiman, R., Panasyuk, A.V., Biesecker, D.A., Kohl, J.L.: 2002, Empirical densities, kinetic temperatures, and outflow velocities in the equatorial streamer belt at solar minimum. Astrophys. J.571, 1008. DOI. ADS.

    Article  ADS  Google Scholar 

  • Suzuki, M.: 2014, On the long-term modulation of solar differential rotation. Solar Phys.289, 4021. DOI. ADS.

    Article  ADS  Google Scholar 

  • Svalgaard, L., Duvall, T.L. Jr., Scherrer, P.H.: 1978, The strength of the sun’s polar fields. Solar Phys.58, 225. DOI. ADS.

    Article  ADS  Google Scholar 

  • Svestka, Z., Farnik, F., Hick, P., Hudson, H.S., Uchida, Y.: 1997, Large-scale active coronal phenomena in YOHKOH SXT images. III. Enhanced post-flare streamer. Solar Phys.176, 355. DOI. ADS.

    Article  ADS  Google Scholar 

  • Talpeanu, D.C.: 2016, Investigating Coronal Fans. Master Thesis, University of Bucharest 1.

  • Thompson, W.T.: 2006, Coordinate systems for solar image data. Astron. Astrophys.449, 791. DOI. ADS.

    Article  ADS  Google Scholar 

  • van Driel-Gesztelyi, L., Green, L.M.: 2015, Evolution of active regions. Liv. Rev. Solar Phys.12, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr., Rich, N.B.: 2007, Coronal pseudostreamers. Astrophys. J.658, 1340. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Grappin, R., Robbrecht, E., Sheeley, N.R. Jr.: 2012, On the nature of the solar wind from coronal pseudostreamers. Astrophys. J.749, 182. DOI. ADS.

    Article  ADS  Google Scholar 

  • Webb, D.F., Gibson, S.E., Hewins, I.M., McFadden, R.H., Emery, B.A., Malanushenko, A., Kuchar, T.A.: 2018, Global solar magnetic field evolution over 4 solar cycles: use of the McIntosh archive. Front. Astron. Space Sci.5, 23. DOI. ADS.

    Article  ADS  Google Scholar 

  • West, M.J., Seaton, D.B.: 2015, SWAP observations of post-flare giant arches in the long-duration 14 October 2014 Solar Eruption. Astrophys. J. Lett.801, L6. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xie, J., Shi, X., Qu, Z.: 2018, North–South asymmetry of the rotation of the solar magnetic field. Astrophys. J.855, 84. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, L., Mursula, K., Usoskin, I.: 2013, Consistent long-term variation in the hemispheric asymmetry of solar rotation. Astron. Astrophys.552, A84. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge the use of SWAP, LYRA, SILSO, and WSO data. SWAP is a project of the Centre Spatial de Liège and the Royal Observatory of Belgium funded by the Belgian Federal Science Policy Office (BELSPO). LYRA is a project of the Centre Spatial de Liège, the Physikalisch-Meteorologisches Observatorium Davos and the Royal Observatory of Belgium funded by the Belgian Federal Science Policy Office (BELSPO) and by the Swiss Bundesamt für Bildung und Wissenschaft. Sunspot data source: WDC-SILSO, Royal Observatory of Belgium, Brussels. Wilcox Solar Observatory data used in this study were obtained via the website wso.stanford.edu, courtesy of J.T. Hoeksema. We acknowledge the use of CHIMERA and CHARM databases, which are using SDO/AIA, SDO/HMI, STEREO, SOHO, and Hinode datasets. We thank Noel Hallemans from the Vrije Universiteit Brussel, for providing the programs to build synoptic maps. We acknowledge support from the Belgian Federal Science Policy Office (BELSPO) through the ESA-PRODEX programme, grant No. 4000120800. We thank the anonymous reviewer for the very useful comments, which greatly improved the manuscript. Many thanks to Sarah Willems and Bogdan Nicula for helping with the IDL issues in these times of confinement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilena Mierla.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

PROBA-2 at Ten Years

Guest Editors: Elke D’Huys, Marie Dominique and Matthew J. West

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MP4 7.7 MB)

Appendices

Appendix A: Synoptic Maps

1.1 A.1 On-Disk Synoptic Maps

The SWAP on-disk synoptic maps (see, e.g., Figure 2) were constructed using averaged 3-wide longitudinal stripes (see left panel of Figure 14), centered on the central meridian for each image in a CR stack. The synoptic map shows an overview of the Sun for each Carrington rotation as observed by the PROBA2/SWAP instrument. The horizontal axis represents the time (in days) and the vertical axis represents the Stonyhurst latitude in degrees. For a description of this coordinate system see Thompson (2006).

Figure 14
figure 14

SWAP image on 11 November 2014. Left panel: The vertical white stripe shows the region at central meridian that is used to build the synoptic map. Middle panel: The horizontal white stripe shows the region at 1.3 solar radii from the Sun center that is used to build the off-limb synoptic map at South Pole. Right panel: Example of a sector where the average value is calculated (white pixels). The sector is centered at South Pole, it has a width of 90 and the height from 1.3 to 1.6 R.

We also build the East–West (EW) SWAP synoptic maps (or time–longitude maps), similar to the classical synoptic maps described above, but this time we used averaged 3-wide latitudinal stripes centered on the solar equator (see Figure 3). The vertical axis represents the time [days] and the horizontal axis represents the Stonyhurst longitude [degrees]. Similar to this, we built EW synoptic maps at different latitudes (±20, ±40) – see, e.g., Figure 4.

1.2 A.2 Off-Limb Synoptic Maps

We build off-limb synoptic maps at the Equator and poles by taking horizontal three-pixel stripes, respectively, at 1.1, 1.3, and 1.6 solar radii from the Sun center, average them over the three-pixel width, and stack them in time – see Figure 5 for examples of off-limb synoptic maps. In the case of equatorial off-limb maps the time [days] is on the horizontal axis and the helioprojective latitude [arcseconds] is on the vertical axis. The cuts are done at different distances from the Sun center. For the polar off-limb images, the \(y\)-axis represents the time [days] and the \(x\)-axis represents the helioprojective longitude [arcseconds]. The central panel of Figure 14 shows an example of a horizontal stripe at a distance of 1.3 R south from the Sun center from which the polar off-limb synoptic maps were created.

Appendix B: Sectors

In order to study the evolution of the solar corona at different altitudes, and over different regions, we divided each image to sectors where we measured the mean brightness. The right panel of Figure 14 shows an example of a sector centered at the South Pole, with a width of 90, and the height from 1.3 to 1.6 R.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mierla, M., Janssens, J., D’Huys, E. et al. Long-Term Evolution of the Solar Corona Using PROBA2 Data. Sol Phys 295, 66 (2020). https://doi.org/10.1007/s11207-020-01635-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01635-x

Keywords

Navigation