Skip to main content
Log in

Characteristics of the Z–R Relationships Observed Using Micro Rain Radar (MRR-2) over Darjeeling (27.05° N, 88.26° E): A Complex Terrain Region in the Eastern Himalayas

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The relationship (\(\varvec{Z} = \varvec{AR}^{\varvec{b}}\)) between radar reflectivity factor,\(\varvec{ Z }\) and rainfall rate, \(\varvec{R }\) is studied using the micro rain radar (MRR) observation located over Darjeeling (27.05° N, 88.26° E, 2194 m above the msl) in the foothills of the eastern Himalayan Mountains during Indian summer monsoon and post monsoon seasons (June–October) 2013. Observations from MRR are classified mainly into two types, stratiform and convective, based on the bright band and non-bright band signatures in the radar reflectivity, respectively. We have observed 12 and 7 cases for the stratiform convective rain events, respectively. In the present study MRR is operated mostly during low intensity rainfall rate (0.02–20 mm/h). During southwest monsoon season \(\varvec{Z} {-} \varvec{R }\) relation for the stratiform and convective rainfall types are found to be \(\varvec{Z} = 272\varvec{R}^{1.78}\) and \(\varvec{Z} = 192\varvec{R}^{1.54}\) respectively. \(\varvec{Z} {-} \varvec{R }\) relation for both stratiform and convective rain shows high temporal variation during different months of monsoon and post monsoon seasons. The coefficient \(\varvec{A}\) varies between 225 and 289 for stratiform rain and between 153 and 235 for convective rain. The exponent \(\varvec{b}\) varies between 1.4 and 2.1 for stratiform rain while between 1.2 and 1.8 for convective rain. Interestingly, we observed a distinct relation with smaller values of \(\varvec{A}\) and \(\varvec{b}\) for convective rain than stratiform rain over Darjeeling. The height dependence of \(\varvec{A}\) and \(\varvec{b}\) are also studied which is found to be very small up to ~ 1.5 km above the surface for both types of the precipitating systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Atlas, D., Srivastava, R., & Sekhon, R. S. (1973). Doppler radar characteristics of precipitation at vertical incidence. Reviews of Geophysics, 11(1), 1–35.

    Article  Google Scholar 

  • Atlas, D., Ulbrich, C. W., Marks, F. D., Black, R. A., Amitai, E., Willis, P. T., et al. (2000). Partitioning tropical oceanic convective and stratiform rains by draft strength. Journal of Geophysical Research: Atmospheres, 105(D2), 2259–2267.

    Article  Google Scholar 

  • Austin, P. M. (1987). Relation between measured radar reflectivity and surface rainfall. Monthly Weather Review, 115(5), 1053–1070.

    Article  Google Scholar 

  • Awaka, J., Le, M., Chandrasekar, V., Yoshida, N., Higashiuwatoko, T., Kubota, T., et al. (2016). Rain type classification algorithm module for GPM dual-frequency precipitation radar. Journal of Atmospheric and Oceanic Technology, 33(9), 1887–1898.

    Article  Google Scholar 

  • Battan, L. J. (1973). Radar observations of the atmosphere (p. 324). Chicago: The University of Chicago.

    Google Scholar 

  • Bringi, V. N., Thurai, M., Nakagawa, K., Huang, G. J., Kobayashi, T., Adachi, A., et al. (2006). Rainfall estimation from C-band polarimetric radar in Okinawa, Japan: Comparisons with 2D-video disdrometer and 400 MHz wind profiler. Journal of the Meteorological Society of Japan. Ser. II, 84(4), 705–724.

    Article  Google Scholar 

  • Das, S., & Maitra, A. (2018). Characterization of tropical precipitation using drop size distribution and rain rate-radar reflectivity relation. Theoretical and Applied Climatology, 132(1–2), 275–286.

    Article  Google Scholar 

  • Das, S., Shukla, A. K., & Maitra, A. (2010). Investigation of vertical profile of rain microstructure at Ahmedabad in Indian tropical region. Advances in Space Research, 45(10), 1235–1243.

    Article  Google Scholar 

  • Fujiwara, M. (1965). Raindrop-size distribution from individual storms. Journal of the Atmospheric Sciences, 22(5), 585–591.

    Article  Google Scholar 

  • Gatlin, P. N., Thurai, M., Bringi, V. N., Petersen, W., Wolff, D., Tokay, A., et al. (2015). Searching for large raindrops: A global summary of two-dimensional video disdrometer observations. Journal of Applied Meteorology and Climatology, 54(5), 1069–1089.

    Article  Google Scholar 

  • Giangrande, S. E., Luke, E. P., & Kollias, P. (2012). Characterization of vertical velocity and drop size distribution parameters in widespread precipitation at ARM facilities. Journal of Applied Meteorology and Climatology, 51(2), 380–391.

    Article  Google Scholar 

  • Harikumar, R., Sampath, S., & Kumar, V. S. (2010). Variation of rain drop size distribution with rain rate at a few coastal and high altitude stations in southern peninsular India. Advances in Space Research, 45(4), 576–586.

    Article  Google Scholar 

  • Jash, D., Resmi, E., Unnikrishnan, C., Sumesh, R., Sreekanth, T., Sukumar, N., et al. (2019). Variation in rain drop size distribution and rain integral parameters during southwest monsoon over a tropical station: An inter-comparison of disdrometer and Micro Rain Radar. Atmospheric Research, 217, 24–36.

    Article  Google Scholar 

  • Joss, J., Schram, K., Thams, J., & Waldvogel, A. (1970). On the quantitative determination of precipitation by a radar (No. Wissenschaftliche mitteilung-63). Osservatorio Ticinese Della Centrale Meteorologica Svizzera Locarno-Monti.

  • Joss, J., & Waldvogel, A. (1969). Raindrop size distribution and sampling size errors. Journal of the Atmospheric Sciences, 26(3), 566–569.

    Article  Google Scholar 

  • Kim, D., Maki, M., & Lee, D. (2010). Retrieval of three-dimensional raindrop size distribution using X-band polarimetric radar data. Journal of Atmospheric and Oceanic Technology, 27(8), 1265–1285.

    Article  Google Scholar 

  • Kirankumar, N., Rao, T. N., Radhakrishna, B., & Rao, D. N. (2008). Statistical characteristics of raindrop size distribution in southwest monsoon season. Journal of Applied Meteorology and Climatology, 47(2), 576–590.

    Article  Google Scholar 

  • Klaassen, W. (1988). Radar observations and simulation of the melting layer of precipitation. Journal of the atmospheric sciences, 45(24), 3741–3753.

    Article  Google Scholar 

  • Lavanya, S., Kirankumar, N., Aneesh, S., Subrahmanyam, K., & Sijikumar, S. (2019). Seasonal variation of raindrop size distribution over a coastal station Thumba: A quantitative analysis. Atmospheric Research, 229, 86–99.

    Article  Google Scholar 

  • Maahn, M., & Kollias, P. (2012). Improved Micro Rain Radar snow measurements using Doppler spectra post-processing. Atmospheric Measurement Techniques, 5(11), 2661.

    Article  Google Scholar 

  • Marshall, J. S., & Palmer, W. M. K. (1948). The distribution of raindrops with size. Journal of meteorology, 5(4), 165–166.

    Article  Google Scholar 

  • Martner, B. E., Yuter, S. E., White, A. B., Matrosov, S. Y., Kingsmill, D. E., & Ralph, F. M. (2008). Raindrop size distributions and rain characteristics in California coastal rainfall for periods with and without a radar bright band. Journal of Hydrometeorology, 9(3), 408–425.

    Article  Google Scholar 

  • Marzuki, Hashiguchi, H., Shimomai, T., Rahayu, I., Vonnisa, I., & Afdal. (2016). Performance evaluation of micro rain radar over sumatra through comparison with disdrometer and wind profiler. Progress in Electromagnetics Research M, 50, 33–46.

  • Marzano, F., Mori, S., Chini, M., Pulvirenti, L., Pierdicca, N., Montopoli, M., et al. (2011). Potential of high-resolution detection and retrieval of precipitation fields from X-band spaceborne synthetic aperture radar over land. Hydrology and Earth System Sciences, 15(3), 859–875.

    Article  Google Scholar 

  • May, P. T., & Rajopadhyaya, D. K. (1996). Wind profiler observations of vertical motion and precipitation microphysics of a tropical squall line. Monthly Weather Review, 124(4), 621–633.

    Article  Google Scholar 

  • Peters, G., Fischer, B., Münster, H., Clemens, M., & Wagner, A. (2005). Profiles of raindrop size distributions as retrieved by microrain radars. Journal of Applied Meteorology, 44(12), 1930–1949.

    Article  Google Scholar 

  • Rao, T. N., Rao, D. N., Mohan, K., & Raghavan, S. (2001). Classification of tropical precipitating systems and associated Z–R relationships. Journal of Geophysical Research: Atmospheres, 106(D16), 17699–17711.

    Article  Google Scholar 

  • Rao, T. N., Rao, D. N., & Raghavan, S. (1999). Tropical precipitating systems observed with Indian MST radar. Radio Science, 34(5), 1125–1139.

    Article  Google Scholar 

  • Reddy, K. K., & Kozu, T. (2003). Measurements of raindrop size distribution over Gadanki during south-west and north-east monsoon. Indian Journal of Radio and Space Physics, 32, 286–295.

    Google Scholar 

  • Reddy, K. K., Kozu, T., Ohno, Y., Jain, A., & Rao, D. N. (2005). Estimation of vertical profiles of raindrop size distribution from the VHF wind pro filer radar Doppler spectra. Indian Journal of Radio and Space Physics (IJRSP), 34(5), 319–327.

    Google Scholar 

  • Rico-Ramirez, M., Cluckie, I., & Han, D. (2005). Correction of the bright band using dual-polarisation radar. Atmospheric Science Letters, 6(1), 40–46.

    Article  Google Scholar 

  • Short, D. A., Kozu, T., & Nakamura, K. (1990). Rainrate and raindrop size distribution observations in Darwin Australia. In Proceeding of Special Symposium on Regional Factors Affecting Radiowave Attenuation due to Rain, Rio de Janeiro, Brazil. International Union of Radio Science Commission, pp 35–40.

  • Steiner, M., & Houze, R. A. J. (1997). Sensitivity of the estimated monthly convective rain fraction to the choice of Z–R relation. Journal of Applied Meteorology, 36(5), 452–462.

    Article  Google Scholar 

  • Sumesh, R., Resmi, E., Unnikrishnan, C., Jash, D., Sreekanth, T., Resmi, M. M., et al. (2019). Microphysical aspects of tropical rainfall during Bright Band events at mid and high-altitude regions over Southern Western Ghats, India. Atmospheric Research, 227, 178–197.

    Article  Google Scholar 

  • Thurai, M., Gatlin, P. N., & Bringi, V. N. (2016). Separating stratiform and convective rain types based on the drop size distribution characteristics using 2D video disdrometer data. Atmospheric Research, 169, 416–423.

    Article  Google Scholar 

  • Tokay, A., & Short, D. A. (1996). Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. Journal of Applied Meteorology, 35(3), 355–371.

    Article  Google Scholar 

  • Tokay, A., Short, D. A., Williams, C. R., Ecklund, W. L., & Gage, K. S. (1999). Tropical rainfall associated with convective and stratiform clouds: Intercomparison of disdrometer and profiler measurements. Journal of Applied Meteorology, 38(3), 302–320.

    Article  Google Scholar 

  • Tridon, F., Van Baelen, J., & Pointin, Y. (2011). Aliasing in Micro Rain Radar data due to strong vertical winds. Geophysical Research Letters, 38(2), L02804.

    Article  Google Scholar 

  • Ulbrich, C. W., & Atlas, D. (2007). Microphysics of raindrop size spectra: Tropical continental and maritime storms. Journal of Applied Meteorology and Climatology, 46(11), 1777–1791.

    Article  Google Scholar 

  • White, A. B., Neiman, P. J., Ralph, F. M., Kingsmill, D. E., & Persson, P. O. G. (2003). Coastal orographic rainfall processes observed by radar during the California Land-Falling Jets Experiment. Journal of Hydrometeorology, 4(2), 264–282.

    Article  Google Scholar 

  • Williams, C. R. (2016). Reflectivity and liquid water content vertical decomposition diagrams to diagnose vertical evolution of raindrop size distributions. Journal of Atmospheric and Oceanic Technology, 33(3), 579–595.

    Article  Google Scholar 

  • Wilson, C. L., & Tan, J. (2001). The characteristics of rainfall and melting layer in Singapore: experimental results from radar and ground instruments. In Eleventh international conference on antennas and propagation (IEE Conf. Publ. No. 480) (Vol. 2, pp. 852–856).

  • Yuter, S. E., & Houze, R. A. J. (1997). Measurements of raindrop size distributions over the Pacific warm pool and implications for Z–R relations. Journal of Applied Meteorology, 36(7), 847–867.

    Article  Google Scholar 

Download references

Acknowledgements

This work is fully supported by supported by Intensification of Research in High Priority Area (IRHPA), Department of Science and Technology (DST), Govt. of India. We thank technical team members of the IRHPA project at Bose Institute for taking the MRR observations. First author (SM) is thankful to Department of Science and Technology, Govt. of India for providing the fellowship under IRHPA project. This work is partially supported by Department of Science and Technology—Science and Engineering Research Board (EMR/2015/000525). Authors also thank to SRM HPCC for processing of topography data. We thank two anonymous reviewers for their positive feedbacks which helps us a lot to improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar Mehta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, S., Mehta, S.K., Singh, S. et al. Characteristics of the Z–R Relationships Observed Using Micro Rain Radar (MRR-2) over Darjeeling (27.05° N, 88.26° E): A Complex Terrain Region in the Eastern Himalayas. Pure Appl. Geophys. 177, 4521–4534 (2020). https://doi.org/10.1007/s00024-020-02472-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02472-6

Keywords

Navigation