Skip to main content
Log in

Negative Magnetoresistance Phenomenon in Diluted Granular Multilayers Co80Fe20(t)|Al2O3

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Several complex theories explaining the phenomenon of negative magnetoresistance (NMR) are discussed, observed in insulating diluted granular multilayers Co80Fe20(t)|Al2O3. In fact, this investigation is re-analyzing the experimental measurements of Co80Fe20 with low nominal thickness t = 0.7 nm of granular layers obtained earlier. Two theories such as quantum interference model and localized magnetic moments model are confronted with experimental measurements in order to provide physical explanations to NMR phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. T. Suzuki, L. Savary, J. P. Liu, J. W. Lynn, L. Balents, and J. G. Checkelsky, Science (Washington, DC, U. S.) 365, 377 (2019).

    Article  ADS  Google Scholar 

  2. J. P. Sun, Y. Y. Jiao, C. J. Yi, S. E. Dissanayake, M. Matsuda, Y. Uwatoko, Y. G. Shi, Y. Q. Li, Z. Fang, and J. G. Cheng, Phys. Rev. Lett. 123, 047201 (2019).

    Article  ADS  Google Scholar 

  3. A. Philippi-Kobs, A. Farhadi, L. Matheis, D. Lott, A. Chuvilin, and H. P. Oepen, Phys. Rev. Lett. 123, 137201 (2019).

    Article  ADS  Google Scholar 

  4. S. Dlimi, A. El Kaaouachi, and A. Narjis, Phys. E (Amsterdam, Neth.) 54, 181 (2013).

  5. S. Dlimi, A. El Kaaouachi, A. Narjis, L. Limouny, A. Sybous, and M. Errai, J. Phys. Chem. Solids 74, 1349 (2013).

    Article  ADS  Google Scholar 

  6. R. Abdia, A. El Kaaouachi, A. Nafidi, and J. Hemine, Phys. B (Amsterdam, Neth.) 373, 96 (2006).

  7. A. El Kaaouachi, A. Nafidi, and G. Biskupski, J. Semicond. Sci. Technol. 18, 69 (2003).

    Article  ADS  Google Scholar 

  8. R. Abdia, A. El Kaaouachi, A. Nafidi, G. Biskupski, and J. Hemine, J. Solid State Electron. 53, 469 (2009).

    Article  ADS  Google Scholar 

  9. M. Errai, A. El Kaaouachi, and H. El Idrissi, J. Semicond. 36, 122001 (2015).

    Article  ADS  Google Scholar 

  10. A. Narjis, A. El Kaaouachi, L. Limouny, S. Dlimi, M. Errai, A. Sybous, and M. Kumaresavanji, J. Magn. Magn. Mater. 332, 6 (2013).

    Article  ADS  Google Scholar 

  11. A. Narjis, A. El Kaaouachi, J. Hemine, A. Sybous, L. Limouny, S. Dlimi, R. Abdia, and G. Biskupski, J. Mod. Phys. 3, 521 (2012).

    Google Scholar 

  12. N. F. Mott, J. Non-Cryst. Solids 1, 1 (1968).

    Article  ADS  Google Scholar 

  13. N. F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1974).

    Google Scholar 

  14. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984; Moscow, Nauka, 1979).

    Chapter  Google Scholar 

  15. H. Liu, A. Pourret, and P. Guyot-Sionnest, ACS Nano 4, 5211 (2010).

    Article  Google Scholar 

  16. V. L. Nguyen, B. Z. Spivak, and B. I. Shklovskii, JETP Lett. 41, 42 (1985).

    ADS  Google Scholar 

  17. A. Narjis, A. El Kaaouachi, L. Limouny, S. Dlimi, A. Sybous, J. Hemine, R. Abdia, and G. Biskupski, Phys. B (Amsterdam, Neth.) 406, 4155 (2011).

  18. A. Narjis, A. El Kaaouachi, A. Sybous, L. Limouny, S. Dlimi, A. Aboudihab, J. Hemine, R. Abdia, and G. Biskupski, J. Mod. Phys. 03, 517 (2012).

    Article  Google Scholar 

  19. H. G. Silva, H. L. Gomes, Y. G. Pogorelov, L. M. C. Pereira, G. N. Kakazei, J. B. Sousa, J. P. Araújo, J. F. L. Mariano, S. Cardoso, and P. P. Freitas, J. Appl. Phys. 106, 113910 (2009).

    Article  ADS  Google Scholar 

  20. A. Kawabata, Solid State Commun. 34, 431 (1980).

    Article  ADS  Google Scholar 

  21. B. L. Altshuler, A. G. Aronov, A. I. Larkin, and D. E. Khmelnitski, Sov. Phys. JETP 54, 411 (1981).

    Google Scholar 

  22. V. L. Nguyen, B. Z. Spivak, and B. I. Shklovskii, Sov. Phys. JETP 62, 1021 (1985).

    Google Scholar 

  23. U. Sivan, O. Entin-Wohlman, and Y. Imry, Phys. Rev. Lett. 60, 1566 (1988).

    Article  ADS  Google Scholar 

  24. J. C. Ousset, S. Askenazy, H. Rakoto, and J. M. Broto, J. Phys. (France) 46, 2145 (1985).

    Article  Google Scholar 

  25. D. V. Baxter, R. Richter, M. L. Trudeau, R. W. Cochrane, and J. O. Strom-Olsen, J. Phys. (France) 50, 1673 (1989).

    Article  Google Scholar 

  26. B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitski, JETP Lett. 36, 195 (1982).

    ADS  Google Scholar 

  27. Y. Toyozawa, J. Phys. Soc. Jpn. 17, 986 (1962).

    Article  ADS  Google Scholar 

  28. Y. Zhang, P. Dai, M. Levy, and M. P. Sarachik, Phys. Rev. Lett. 64, 2687 (1990).

    Article  ADS  Google Scholar 

  29. D. M Finlayson, J. Irvine, and S. Peterkin, Philos. Mag., B 39, 253 (1979).

    Article  ADS  Google Scholar 

  30. D. M. Finlayson, J. Phys.: Condens. Matter 6, 8277 (1994).

    ADS  Google Scholar 

  31. G. Bergmann, Phys. Rev. B 28, 2914 (1983).

    Article  ADS  Google Scholar 

  32. T. Holstein, Phys. Rev. 124, 1329 (1961).

    Article  ADS  Google Scholar 

  33. V. L. Nguyen, B. Z. Spivak, and B. I. Shklovskii, JETP Lett. 41, 42 (1985).

    ADS  Google Scholar 

  34. Y. Zhang and M. P. Sarachik, Phys. Rev. B 43, 7212 (1991).

    Article  ADS  Google Scholar 

  35. L. Essaleh, J. Galibert, S. M. Wasim, E. Hernandez, and J. Leotin, Phys. Rev. B 50, 18040 (1994).

    Article  ADS  Google Scholar 

  36. S. Ishida, S. Takaoka, K. Oto, K. Murase, S. Shirai, and T. Serikawa, Appl. Surf. Sci. 113–114, 685 (1997).

    Article  ADS  Google Scholar 

  37. S. Shekhar, V. Prasad, and S. V. Subramanyam, Phys. Lett. A 371, 486 (2007).

    Article  ADS  Google Scholar 

  38. W. Schirmacher, Phys. Rev. B 41, 2461 (1990).

    Article  ADS  Google Scholar 

  39. Y. Toyozawa, J. Phys. Soc. Jpn. 17, 986 (1962).

    Article  ADS  Google Scholar 

  40. K. Yosida, Phys. Rev. 107, 396 (1957).

    Article  ADS  Google Scholar 

  41. F. Tremblay, M. Pepper, D. Ritchie, D. C. Peacock, J. E. F. Frost, and G. A. C. Jones, Phys. Rev. B 39, 8059 (1989).

    Article  ADS  Google Scholar 

  42. B. Capoen, PhD Thesis (Univ. of Lille I, France, 1993).

  43. Y. Zhang and M. P. Sarachik, Phys. Rev. B 43, 7212 (1991).

    Article  ADS  Google Scholar 

  44. V. K. Ksenevich, J. Galibert, and V. A. Samuilov, Phys. E (Amsterdam, Neth.) 17, 389 (2003).

  45. J. Galibert, V. A. Samuilov, V. K. Ksenevich, T. Ferrus, M. Rafailovich, and J. Sokolov, Phys. B (Amsterdam, Neth.) 294295, 314 (2001).

  46. N. Chowdhury, W. Kleemann, O. Petracic, F. Kronast, A. Doran, A. Scholl, S. Cardoso, P. Freitas, and S. Bedanta, Phys. Rev. B 98, 134440 (2018).

    Article  ADS  Google Scholar 

  47. T. Hasegawa, S. Kanatani, M. Kazaana, K. Takahashi, K. Kumagai, M. Hirao, and S. Ishio, Sci. Rep., 1 (2017).

  48. G. B. G. Stenning, L. R. Shelford, S. A. Cavill, and F. Hoffman, New J. Phys. 17, 013019 (2015).

    Article  ADS  Google Scholar 

  49. A. Orozco, Z. Caamaño, and A. Rosales, J. Phys.: Conf. Ser. 687, 012109 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. El Kaaouachi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Oujdi, A., El Kaaouachi, A., Echchelh, A. et al. Negative Magnetoresistance Phenomenon in Diluted Granular Multilayers Co80Fe20(t)|Al2O3. Phys. Solid State 62, 885–890 (2020). https://doi.org/10.1134/S1063783420050212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420050212

Keywords:

Navigation