Skip to main content
Log in

Study of Features of the Composition, Magnetic, and Crystal Structure of Barium Hexaferrite BaFe12 – xTixO19

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The features of the composition, crystal, and magnetic structure of Ti-substituted barium hexaferrite BaFe12 – xTixO19 (0.25 ≤ x ≤ 1.5) are studied by Mössbauer spectroscopy, vibration magnetometry, X-ray diffraction, and simultaneous thermal analysis. Bounded heterovalent isomorphism implemented by the scheme 2Fe3+ → Ti4+ + Fe2+ while retaining the charge balance is established when Fe3+ ions are partially substituted with Ti4+ ions. An increase in the 3d-electron density and the presence of Fe2+ in BaFe12 – xTixO19 samples with x = 1.5 is detected by Mössbauer spectroscopy. The heterovalent isomorphic substitution limit is determined to be within 0.75 < x < 1.0. Using Mössbauer spectroscopy and X-ray diffraction, the formation of titanium-contained phases at x = 1.0 whose content increases with the degree of substitution is shown. The data on the preferential distribution of substituent ions (Ti4+) in the barium hexaferrite structure at the 12k and 2b sites are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. Adelskold, Ark. Mineral. Geol. A 12, 1 (1938).

    Google Scholar 

  2. R. C. Pullar, Prog. Mater. Sci. 57, 1191 (2012).

    Article  Google Scholar 

  3. J. Smit and H. P. J. Wijn, Ferrites (Phylips Tech. Lib., 1959).

    Google Scholar 

  4. V. V. Korovushkin, M. N. Shipko, V. G. Kostishin, I. M. Isaev, A. Yu. Mironovich, S. V. Trukhanov, and A. V. Trukhanov, Inorg. Mater. 55, 1007 (2019).

    Article  Google Scholar 

  5. A. S. Kamzin and L. P. Ol’khovik, Phys. Solid State 41, 1658 (1999).

    Article  ADS  Google Scholar 

  6. V. V. Korovushkin, A. V. Trukhanov, M. N. Shipko, V. G. Kostishin, I. M. Isaev, A. Yu. Mironovich, and S. V. Trukhanov, Russ. J. Inorg. Chem. 64, 574 (2019).

    Article  Google Scholar 

  7. A. V. Trukhanov, V. G. Kostishin, V. V. Korovushkin, L. V. Panina, S. V. Trukhanov, V. A. Turchenko, I. S. Po-lyakov, R. Kh. Rakhmatulin, G. A. Filatov, T. I. Zu-bar’, V. V. Oleinik, E. C. Yakovenko, L. Yu. Matsui, L. L. Vovchenko, V. L. Launets, and E. L. Rukhanova, Phys. Solid State 60, 1768 (2018).

    Article  ADS  Google Scholar 

  8. Sh. Sh. Bashkirov, A. V. Liberman, A. A. Valiulin, L. D. Zaripova, and S. V. Kokin, Phys. Solid State 42, 79 (2000).

    Article  ADS  Google Scholar 

  9. T. Tsutaoka, A. Tsurunaga, and N. Koga, J. Magn. Magn. Mater. 399, 64 (2016).

    Article  ADS  Google Scholar 

  10. M. H. Shams, A. Rozatian, M. Yousefi, J. Valıček, and V. Šepelák, J. Magn. Magn. Mater. 399, 10 (2016).

    Article  ADS  Google Scholar 

  11. V. V. Somana, V. M. Nanotib, D. K. Kulkarnic, and V. V. Somand, Phys. Proc. 54, 30 (2014).

    Article  ADS  Google Scholar 

  12. A. Ghasemi, A. Hossienpour, A. Morisako, A. Saatchi, and M. Salehi, J. Magn. Magn. Mater. 302, 429 (2006).

    Article  ADS  Google Scholar 

  13. R. Alam, M. Tehrani, M. Moradi, E. Hosseinpour, and A. Sharbati, J. Magn. Magn. Mater. 323, 1040 (2011).

    Article  ADS  Google Scholar 

  14. Y. Zheng, Z. Yu, Y. Shao, S. Mo, and Y. Lin, Hyperfine Interact. 94, 2035 (1994).

    Article  ADS  Google Scholar 

  15. R. Alam, M. Moradi, H. Nikmanesh, J. Ventura, and M. Rostami, J. Magn. Magn. Mater. 402, 20 (2016).

    Article  ADS  Google Scholar 

  16. C. L. Lengauer, E. Tillmans, and G. Hentschel, Mineral. Petrol. 71, 1 (2001).

    Article  ADS  Google Scholar 

  17. P. A. Mariño-Castellanos, J. Anglada-Rivera, A. Cruz-Fuentes, and R. Lora-Serrano, J. Magn. Magn. Mater. 280, 214 (2004).

    Article  ADS  Google Scholar 

  18. P. Quoiroz, B. Halbedel, A. Bustamante, and J. Gonzalez, Hyperfine Interact. 202, 97 (2011).

    Article  ADS  Google Scholar 

  19. D. A. Vinnik, D. A. Zherebtsov, L. S. Mashkovtseva, A. S. Semisalova, I. V. Krivtsov, L. I. Isaenko, G. G. Mikhailov, and R. Niewa, Cryst. Growth Des. 14, 5834 (2014).

    Article  Google Scholar 

  20. D. A. Vinnik, D. A. Zherebtsov, L. S. Mashkovtseva, N. S. Perov, A. S. Semisalova, I. V. Krivtsov, L. I. Isaenko, and G. G. Mikhailov, in Proceedings of the 6th Baikal International Conference,2014, p. 161.

  21. F. Menil, J. Phys. Chem. Solids 46, 763 (1985).

    Article  ADS  Google Scholar 

  22. R. Ingalls, Phys. Rev. A 133, 787 (1964).

    Article  ADS  Google Scholar 

  23. G. Bancroft, A. Maddock, and R. Burns, Geochim. Cosmochim. Acta 31, 2219 (1967).

    Article  ADS  Google Scholar 

  24. E. J. W. Verwey and P. H. Haaman, Physica (Amsterdam, Neth.) 8, 979 (1941).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, agreement no. 19-19-00694, May 6, 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Trukhanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korovushkin, V.V., Trukhanov, A.V., Kostishin, V.G. et al. Study of Features of the Composition, Magnetic, and Crystal Structure of Barium Hexaferrite BaFe12 – xTixO19. Phys. Solid State 62, 891–901 (2020). https://doi.org/10.1134/S1063783420050145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420050145

Keywords:

Navigation