Skip to main content
Log in

Effect of the Initial States, the Anisotropy, and Structural Defects on a Nonequilibrium Critical Behavior of the Three-Dimensional Heisenberg Model

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A numerical Monte Carlo study has been performed on the influence of various initial states, easy-axis-type magnetic anisotropy, and structural defects on a nonequilibrium critical behavior of the classical three-dimensional Heisenberg model. An analysis of the time dependence of the magnetization and the autocorrelation function for the isotropic Heisenberg model shows substantial influence of the initial states on the relaxation of the magnetization and the aging effects in the behavior of the autocorrelation function, which are characterized by anomalous slowing down of the relaxation and correlation in the system as the waiting time increases. The study of the anisotropic Heisenberg model shows that the behavior of the magnetization and the autocorrelation function in a long-time regime is characterized by the critical exponents of the three-dimensional Ising model with a faster time decay of the autocorrelation function than that for the isotropic model. It has been revealed that the existence of structural defects in the case of the evolution of the system from the low-temperature initial state leads to an anomalously significant slowing down of the autocorrelation function. These features in the behavior of the autocorrelation function are characterized by the “superaging” effect with “superaging” exponent μ = 2.6(1) and related to the pinning of domain walls on structural defects during a nonequilibrium change in the domain structure of the system. In the case of evolution from the high-temperature initial state, the structural defects enhance the aging effect in the aging regime but their influence is irrelevant in the long-time regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

REFERENCES

  1. A. Pelissetto and E. Vicari, Phys. Rept. 368, 549 (2002).

    Article  ADS  Google Scholar 

  2. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 436 (1977).

    Article  ADS  Google Scholar 

  3. M. E. Fisher and A. Aharony, Phys. Rev. Lett. 30, 559 (1973).

    Article  ADS  Google Scholar 

  4. A. Aharony and M. E. Fisher, Phys. Rev. B 8, 3323 (1973).

    Article  ADS  Google Scholar 

  5. A. Aharony, Phys. Rev. B 8, 3342 (1973).

    Article  ADS  Google Scholar 

  6. G. B. Teitel’baum, JETP Lett. 21, 154 (1975).

    ADS  Google Scholar 

  7. H. A. Fernandes, J. R. Drugowich de Felicio, and A. A. Caparica, Phys. Rev. B 72, 054434 (2005).

    Article  ADS  Google Scholar 

  8. H. A. Fernandes, R. da Silva, and J. R. Drugowich de Felicio, J. Stat. Mech. 6, P10002 (2006).

    Article  Google Scholar 

  9. P. Peczak and D. P. Landau, Phys. Rev. B 47, 14260 (1993).

    Article  ADS  Google Scholar 

  10. E. Vincent, J. Hammann, M. Ocio, J. P. Bouchaud, and L. F. Cugliandolo, Lect. Notes Phys. 492, 184 (1997).

  11. P. Calabrese and A. Gambassi, J. Phys. A 38, R133 (2005).

    Article  ADS  Google Scholar 

  12. P. Calabrese, A. Gambassi, and F. Krzakala, J. Stat. Mech. 6, P06016 (2006).

    Google Scholar 

  13. V. V. Prudnikov, P. V. Prudnikov, and M. V. Mamonova, Phys. Usp. 60, 762 (2017).

    Article  ADS  Google Scholar 

  14. K. Chen, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. B 48, 3249 (1993).

    Article  ADS  Google Scholar 

  15. H. K. Janssen, B. Schaub, and B. Schmittmann, Z. Phys. B 73, 539 (1989).

    Article  ADS  Google Scholar 

  16. V. V. Prudnikov, P. V. Prudnikov, A. S. Krinitsyn, A. N. Vakilov, E. A. Pospelov, and M. V. Rychkov, Phys. Rev. E 81, 011130 (2010).

    Article  ADS  Google Scholar 

  17. V. V. Prudnikov, P. V. Prudnikov, I. A. Kalashnikov, and M. V. Rychkov, J. Exp. Theor. Phys. 110, 253 (2010).

    Article  ADS  Google Scholar 

  18. V. V. Prudnikov, P. V. Prudnikov, I. A. Kalashnikov, and S. S. Tsirkin, J. Exp. Theor. Phys. 106, 1095 (2008).

    Article  ADS  Google Scholar 

  19. H. G. Ballesteros, L. A. Fernandez, V. Martin-Mayor, and A. Munoz Sudupe, Phys. Lett. B 387, 125 (1996).

    Article  ADS  Google Scholar 

  20. P. V. Prudnikov, V. V. Prudnikov, E. A. Pospelov, P. N. Malyarenko, and A. N. Vakilov, Prog. Theor. Exp. Phys. 2015, 053A01 (2015).

  21. V. V. Prudnikov, P. V. Prudnikov, E. A. Pospelov, and P. N. Malyarenko, JETP Lett. 102, 167 (2015).

    Article  ADS  Google Scholar 

  22. V. V. Prudnikov, P. V. Prudnikov, and E. A. Pospelov, J. Stat. Mech. 2016, P043303 (2016).

    Article  Google Scholar 

  23. V. V. Prudnikov, P. V. Prudnikov, and E. A. Pospelov, J. Exp. Theor. Phys. 118, 401 (2014).

    Article  ADS  Google Scholar 

  24. V. V. Prudnikov, P. V. Prudnikov, E. A. Pospelov, and A. N. Vakilov, Phys. Lett. A 379, 774 (2015).

    Article  Google Scholar 

  25. V. V. Prudnikov, P. V. Prudnikov, and M. V. Mamonova, Quantum-Statistical Theory of Solids (Lan’, St. Petersburg, 2016) [in Russian].

  26. N. N. Bogolyubov and S. V. Tyablikov, Zh. Eksp. Teor. Fiz. 19, 251 (1949).

    Google Scholar 

  27. N. N. Bogolyubov and S. V. Tyablikov, Zh. Eksp. Teor. Fiz. 19, 256 (1949).

    Google Scholar 

  28. S. V. Tyablikov, Methods in the Quantum Theory of Magnetism (Nauka, Moscow, 1975; Plenum, New York, 1967).

  29. V. V. Prudnikov, A. V. Ivanov, and A. A. Fedorenko, JETP Lett. 66, 835 (1997).

    Article  ADS  Google Scholar 

  30. A. S. Krinitsyn, V. V. Prudnikov, and P. V. Prudnikov, Theor. Math. Phys. 147, 561 (2006).

    Article  Google Scholar 

  31. P. V. Prudnikov, V. V. Prudnikov, and M. A. Medvedeva, JETP Lett. 100, 446 (2014).

    Article  ADS  Google Scholar 

  32. P. V. Prudnikov, V. V. Prudnikov, M. A. Medvedeva, and N. I. Piskunova, J. Magn. Magn. Mater. 387, 387 (2015).

    Article  Google Scholar 

  33. V. V. Prudnikov, A. N. Vakilov, and P. V. Prudnikov, Phase Transitions and Methods of Their Computer Simulation (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  34. A. Jaster, J. Mainville, L. Shulke, and B. Zheng, J. Phys. A 32, 1395 (1999).

    Article  ADS  Google Scholar 

  35. A. B. Harris, J. Phys. C 7, 1671 (1974).

    Article  ADS  Google Scholar 

  36. R. Fol’k, Yu. Golovach, and T. Yavorskii, Phys. Usp. 46, 169 (2003).

    Article  ADS  Google Scholar 

  37. A. K. Murtazaev, I. K. Kamilov, and A. B. Babaev, J. Exp. Theor. Phys. 99, 1201 (2004).

    Article  ADS  Google Scholar 

  38. V. V. Prudnikov, P. V. Prudnikov, A. N. Vakilov, and A. S. Krinitsyn, J. Exp. Theor. Phys. 105, 371 (2007).

    Article  ADS  Google Scholar 

  39. V. V. Prudnikov, P. V. Prudnikov, and A. N. Vakilov, Theoretical Methods for Describing the Nonequilibrium Critical Behavior of Structurally Disordered Systems (Nauka, Moscow, 2013) [in Russian].

    Google Scholar 

  40. P. E. Berche, C. Chatelain, B. Berche, and W. Janke, Eur. Phys. J. B 38, 463 (2004).

    Article  ADS  Google Scholar 

  41. M. Hasenbusch, F. P. Toldin, A. Pelissetto, and E. Vicari, J. Stat. Mech. 2007, P02016 (2007).

    Google Scholar 

  42. V. V. Prudnikov, P. V. Prudnikov, and P. N. Malyarenko, J. Exp. Theor. Phys. 125, 1102 (2017).

    Article  ADS  Google Scholar 

  43. V. V. Prudnikov, P. V. Prudnikov, and P. N. Malyarenko, Phys. Solid State 60, 1098 (2018).

    Article  ADS  Google Scholar 

  44. V. V. Prudnikov, P. V. Prudnikov, E. A. Pospelov, and P. N. Malyarenko, JETP Lett. 107, 569 (2018).

    Article  ADS  Google Scholar 

  45. V. V. Prudnikov, P. V. Prudnikov, and I. S. Popov, J. Exp. Theor. Phys. 126, 368 (2018).

    Article  ADS  Google Scholar 

  46. M. Henkel and M. Pleimling, Non-Equilibrium Phase Transitions (Springer, Heidelberg, 2010).

    Book  MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (projects nos. 17-12-00279, 18-42-550003, and 20-32-70189) and the Council on Grants at the President of the Russian Federation (grants MD-6868.2018.2 and MD-2229.2020.2). The calculations were performed using the resources of the Collective Use Center “Center of Data of the Far-East Branch of the Russian Academy of Sciences” and Supercomputer Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Prudnikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prudnikov, V.V., Prudnikov, P.V. & Lyakh, A.S. Effect of the Initial States, the Anisotropy, and Structural Defects on a Nonequilibrium Critical Behavior of the Three-Dimensional Heisenberg Model. Phys. Solid State 62, 821–836 (2020). https://doi.org/10.1134/S1063783420050261

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420050261

Keywords:

Navigation