Skip to main content
Log in

On the algebraic structure of the copositive cone

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We decompose the copositive cone \(\mathcal {COP}^{n}\) into a disjoint union of a finite number of open subsets \(S_{{\mathcal {E}}}\) of algebraic sets \(Z_{{\mathcal {E}}}\). Each set \(S_{{\mathcal {E}}}\) consists of interiors of faces of \(\mathcal {COP}^{n}\). On each irreducible component of \(Z_{{\mathcal {E}}}\) these faces generically have the same dimension. Each algebraic set \(Z_{{\mathcal {E}}}\) is characterized by a finite collection \({{\mathcal {E}}} = \{(I_{\alpha },J_{\alpha })\}_{\alpha = 1,\dots ,|\mathcal{E}|}\) of pairs of index sets. Namely, \(Z_{{\mathcal {E}}}\) is the set of symmetric matrices A such that the submatrices \(A_{J_{\alpha } \times I_{\alpha }}\) are rank-deficient for all \(\alpha \). For every copositive matrix \(A \in S_{{\mathcal {E}}}\), the index sets \(I_{\alpha }\) are the minimal zero supports of A. If \(u^{\alpha }\) is a corresponding minimal zero, then \(J_{\alpha }\) is the set of indices j such that \((Au^{\alpha })_j = 0\). We call the pair \((I_{\alpha },J_{\alpha })\) the extended support of the zero \(u^{\alpha }\), and \({{\mathcal {E}}}\) the extended minimal zero support set of A. We provide some necessary conditions on \({{\mathcal {E}}}\) for \(S_{{\mathcal {E}}}\) to be non-empty, and for a subset \(S_{{{\mathcal {E}}}'}\) to intersect the boundary of another subset \(S_{{\mathcal {E}}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Baumert, L.D.: Extreme copositive quadratic forms. Pac. J. Math. 19(2), 197–204 (1966)

    Article  MathSciNet  Google Scholar 

  2. Bomze, I.M.: Detecting all evolutionarily stable strategies. J. Optim. Theory Appl. 75(2), 313–329 (1992)

    Article  MathSciNet  Google Scholar 

  3. Bomze, I.M.: Copositive optimization—recent developments and applications. Eur. J. Oper. Res. 216(3), 509–520 (2012)

    Article  MathSciNet  Google Scholar 

  4. Bomze, I.M., Schachinger, W., Uchida, G.: Think co(mpletely )positive !—Matrix properties, examples and a clustered bibliography on copositive optimization. J. Global Optim. 52, 423–445 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bomze, I.M., Schachinger, W., Ullrich, R.: The complexity of simple models—a study of worst and typical hard cases for the standard quadratic optimization problem. Math. Oper. Res. 43(2), 651–674 (2018)

    Article  MathSciNet  Google Scholar 

  6. Diananda, P.H.: On nonnegative forms in real variables some or all of which are nonnegative. Proc. Camb. Philos. Soc. 58, 17–25 (1962)

    Article  MathSciNet  Google Scholar 

  7. Dickinson, P.J., Dür, M., Gijben, L., Hildebrand, R.: Irreducible elements of the copositive cone. Linear Algebra Appl. 439, 1605–1626 (2013)

    Article  MathSciNet  Google Scholar 

  8. Dickinson, P.J., Hildebrand, R.: Considering copositivity locally. J. Math. Anal. Appl. 437(2), 1184–1195 (2016)

    Article  MathSciNet  Google Scholar 

  9. Dickinson, P.J.C.: Geometry of the copositive and completely positive cones. J. Math. Anal. Appl. 380(1), 377–395 (2011)

    Article  MathSciNet  Google Scholar 

  10. Dür, M.: Copositive programming—a survey. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent advances in optimization and its applications in engineering, pp. 3–20. Springer, Berlin (2010)

    Chapter  Google Scholar 

  11. Hildebrand, R.: Minimal zeros of copositive matrices. Linear Algebra Appl. 459, 154–174 (2014)

    Article  MathSciNet  Google Scholar 

  12. Hildebrand, R.: Copositive matrices with circulant zero support set. Linear Algebra Appl. 514, 1–46 (2017)

    Article  MathSciNet  Google Scholar 

  13. Hiriart-Urruty, J.B., Seeger, A.: A variational approach to copositive matrices. SIAM Rev. 52(4), 593–629 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Hildebrand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hildebrand, R. On the algebraic structure of the copositive cone. Optim Lett 14, 2007–2019 (2020). https://doi.org/10.1007/s11590-020-01591-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-020-01591-2

Keywords

Navigation